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Abstract

This article addresses the problem of simultaneous and robust closed-loop control of joint stiffness and position, for a

class of antagonistically actuated pneumatic soft robots with rigid links and compliant joints. By introducing a first-order

dynamic equation for the stiffness variable and using the additional control degree of freedom, embedded in the null space

of the pneumatic actuator matrix, an innovative control approach is introduced comprising an adaptive compensator and

a dynamic decoupler. The proposed solution builds upon existing adaptive control theory and provides a technique for

closing the loop on joint stiffness in pneumatic variable stiffness actuators. Under a very mild assumption involving the

inertia and actuator matrices, the solution is able to cope with uncertainties of the model and, when the desired stiffness

is constant or slowly varying, also of the pneumatic actuator. Position and stiffness decoupling is achieved by the intro-

duction of a first-order differential equation for an internal state variable of the controller, which takes into account the

time derivative of pressure in the stiffness dynamics. A formal proof of the stability of the position and stiffness tracking

errors is provided. An appealing property of the approach is that it does not require higher derivatives of position or any

derivatives of stiffness. The solution is validated with respect to several use-cases, first in simulation and then via a real

pneumatic soft robot with McKibben muscles. A comparison with respect to existing techniques reveals a more robust

position and stiffness tracking skill.
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1. Introduction

The aspiration to achieve or even surpass human dexterity

and promptness in performing motion and manipulation

tasks has fostered the development of robots with

embedded flexibility in the last few decades. In contrast to

previous practice, in which robot elasticity was sought to

be suppressed, nowadays it is purposely introduced and

encouraged in order to create a human-friendly, energy-

optimized, and lightweight soft robots with high force-to-

weight ratios. Thanks to these properties, soft robots have

shown promising aspects as far as it concerns the assistance

of and safe interaction with humans. Creating shared

human–robot workplaces would have a positive social and

economic impact (Ajoudani et al., 2018), whereas human–

robot collaboration would radically improve the health of

manufacturing workers if robots could assist them in carry-

ing heavy equipment (Cherubini et al., 2016). Moreover,

the idea of soft robot design has led to the development of

effective prosthetic devices such as tendon-driven PISA/IIT

SoftHand Pro-H (Piazza et al., 2017), while there is still

ongoing research in developing energy-efficient autono-

mous mobile soft robots (Niiyama et al., 2007; Semini

et al., 2011; Seok et al., 2015; Verrelst et al., 2005).

The compliance of soft robots, with flexibility concen-

trated at joints, can be achieved by several different

mechanisms (Vanderborght et al., 2013). Among them,

variable stiffness actuators (VSAs) seem to be most auspi-

cious in typical applications (Grioli et al., 2015), over-

performing rigid robots regarding robustness and load-to-
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weight ratio (Albu-Schäffer et al., 2007; Bicchi and

Tonietti, 2002). Their actuation can be either electrically,

pneumatically, or hydraulically powered. Even though most

attention is nowadays drawn to the electrically powered

VSA, pneumatic actuators still have benefits as for the

higher power-to-weight ratio and simplicity of the mechan-

ism (Caldwell et al., 1995; Van Ham et al., 2009). The bio-

logically inspired agonist–antagonistic setups of VSAs

enable online compliance adaptation, which is of the

utmost importance when robots operate in anthropic envir-

onments (Bicchi and Tonietti, 2004; Haddadin et al.,

2009).

The compliance of a non-interactive robot is usually set

in open loop, which means that the elastic characteristic of

a soft robot has to be obtained in advance, either by using

analytical calculation from the datasheet of the VSA as in

the work of Angelini et al. (2018), or performing model

identification as carried out by Lukic et al. (2019); Lukić

et al. (2016). In contrast, closed-loop stiffness control has

several benefits, as it provides full state feedback and infor-

mation about the dynamical relation between actuation sys-

tem and joints. Stiffness feedback approaches enable the

soft robot manipulator to be reactive to external distur-

bances (Hogan, 1985), e.g., in the case when there is a con-

tact between the environment and the robot. They are

advantageous when the goal is to store energy (Garabini

et al., 2011; Keppler et al., 2016) or to perform a task that

requires delicate contact with the environment (Albu-

Schaffer and Hirzinger, 2002; Ott et al., 2008).

Furthermore, if decoupling position and stiffness control is

obtained, soft robots are able to achieve high position accu-

racy, while in the meantime realize a range of possible joint

stiffness.

Several approaches have been proposed for joint stiff-

ness and position control such as static and dynamic feed-

back linearization approach (De Luca and Lucibello, 1998;

Palli et al., 2008; Potkonjak et al., 2011), and backstepping

control law (Petit et al., 2015). All the above-mentioned

approaches assume that the dynamic model is precisely

known, which complicates their practical implementations.

Model predictive control and sliding mode control (Best

et al., 2016), as well as nonlinear adaptive control of posi-

tion and stiffness Tonietti and Bicchi (2002) have been

applied on pneumatically driven VSAs. In both cases, exact

knowledge of model parameters is not a precondition. As

the stiffness is controlled in open loop, the solution of

Tonietti and Bicchi (2002) can still be improved in order to

achieve safer solutions for anthropic environments. Current

results exposed by Della Santina et al. (2017) and Angelini

et al. (2018) indicate the importance of compliance preser-

ving and show, by means of learning algorithms, that this

can be achieved by reducing the effect of the feedback

action and, in contrast, reinforcing the feedforward term.

The contributions of this article are built on the founda-

tion of the works by Tonietti and Bicchi (2002), Bicchi and

Tonietti (2002), Spong (1989), Della Santina et al. (2017),

and Keppler et al. (2018). Compared with the work by

Tonietti and Bicchi (2002), a first extension stems from the

fact that the robot’s stiffness is controlled in closed loop,

which benefits to the overall system safety. A second

appealing feature of the proposed method is the use of the

control degrees of freedom (DoFs), associated with the null

space of the actuator matrix, to decouple the tracking of

position commands from stiffness ones. The actuator

matrix maps here the relation between muscle pressures

and joint elastic torque. While the idea of using the null-

space projections is not new in robotics, it has been applied

to the Jacobian matrix of a redundant manipulator to

achieve force (Khatib, 1987) and torque control (Dietrich

et al., 2015), the presented approach enables the above-

mentioned decoupling, without the necessity of higher-

order derivatives (cf. Keppler et al., 2018; Palli et al.,

2008), even when the system model is not perfectly known.

The third contribution of this work is the experimental vali-

dation of the method on a real two-DoF soft robot arm with

rigid links and flexible rotary joints, driven by pneumati-

cally powered VSAs in an antagonistic setup. In the setup,

artificial McKibben muscles are used as a flexible part of

the pneumatic actuator system (Chou and Hannaford, 1996;

Gavrilović and Marić, 1969), behaving as springs with non-

linear characteristics owing to the air compressibility.

2. Problem statement

Consider a soft robot with discrete points of elasticity coin-

ciding with its n joints, provided with pneumatic actuation,

which is used in applications requiring simultaneous regu-

lation of joint position and stiffness. Having denoted with

q = (q1, . . . , qn)
T and S = (S1, . . . , Sn)

T the robot’s posi-

tion and stiffness vectors, respectively, in which qi and Si

are the ith joint angle and stiffness variables, a full model

of the robot describing these vectors dynamics is required.

As is known, the position vector’s dynamics is given by the

differential equation:

B(q)€q + C(q, _q) _q + G(q)= t + text ð1Þ

where B(q) 2 R
n× n is the inertia matrix, C(q, _q) 2 R

n× n

is the matrix of Coriolis, centrifugal, and damping terms,

G(q) 2 R
n is the vector of gravity forces, t = (t1, . . . , tn)

T

is the elastic torque vector, and text 2 R
n is the vector of

external torque loads.

Moreover, consider the class of pneumatically driven

robots with so-called McKibben artificial muscles in antag-

onistic configuration, where every joint i is actuated by a

pair of muscles, ai and bi, attached to a pulley of radius Ri

(Figure 1).

The ith pair of muscles are responsible for providing the

torque ti required for motion of the ith joint, according to

the static equation:

ti = ti, a � ti, b = RiFi, a(qi)� RiFi, b(qi)

where Fi, a and Fi, b are the elastic (tension) forces applied

by the two muscles. The two forces of the pair of muscles
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depend on their internal pressures, pi, a and pi, b. As in the

work of Tonietti and Bicchi (2002), it can be assumed that

the relations between elastic forces and pressures are

expressed in the form

Fi, a(qi)= K
g
i, a fi, a(qi)pi, a

Fi, b(qi)= K
g
i, b fi, b(qi)pi, b

where K
g
i, a and K

g
i, b are construction-dependent muscle

parameters, and fi, a(qi) and fi, b(qi) are the elongations of

the muscles, given by the relations

fi, a(qi)= (li, a, n � qiRi)
2 � l2

i, a,m

fi, b(qi)= (li, b, n + qiRi)
2 � l2

i, b,m

where li, a, n and li, b, n are the muscles’ nominal lengths and

li, a,m and li, b,m their minimums. To achieve a more com-

pact form, let us assume for simplicity that each antagonis-

tic pair of muscles have identical construction constants,

that is, K
g
i, a = K

g
i, b = K

g
i , and let us define the constants

Ki = K
g
i Ri. Denoting then the diagonal construction-

dependent constant matrix K = diag(Ki), the muscle elon-

gation matrix F 2 R
n× 2n

F(q)=

f1, a(q1) �f1, b(q1) � � � 0 0

0 0 . .
. ..

. ..
.

0 0 � � � fn, a(qn) �fn, b(qn)

0
B@

1
CA

and the pressure vector p 2 R
2n× n as

p = (p1, a, p1, b, p2, a, p2, b, . . . , pn, a, pn, b)
T

the generalized elastic torque vector t can be written as

t = K F(q)p ð2Þ

Equation (1) and (2) describe the dynamics of the joint

position vector, under the actuation of the input pressure

vector p.

Moving on now to the ith joint’s stiffness, by assuming

that its pressure does not depend on its position, the stiff-

ness itself can be obtained from its definition:

Si =�
∂ti

∂qi

= � Ki

∂fi, a

∂qi

(qi)pi, a �
∂fi, b

∂qi

(qi)pi, b

� �
=� Ki fq, i, a(qi)pi, a � fq, i, b(qi)pi, b

� �
Defining a matrix Fq(q) as

fq, 1, a(q1) �fq, 1, b(q1) � � � 0 0

0 0 . .
. ..

. ..
.

0 0 � � � fq, n, a(qn) �fq, n, b(qn)

0
B@

1
CA

the stiffness vector can be written more concisely as

S = � K Fq(q)p ð3Þ

In order to obtain closed-loop control of the robot’s stiff-

ness S, a dynamic model for this variable is also needed.

Inspired by the approach of De Luca and Lucibello (1998),

this can be obtained by considering the first time derivative

of S as in the following:

_S = � K _Fq(q)p� K Fq(q) _p ð4Þ

Therefore, a full model of a soft robot with pneumatic

muscles can be obtained from (1), (2), (4), and thus can be

written as

B(q) €q + C(q, _q) _q + G(q)= K F(q)p� text

_S =� K _Fq(q)p� KFq(q) _p
ð5Þ

We assume in the following that no interaction with the

environment occurs, that is, the external torque load is

identically null (text = 0 for all t), and that each pressure

regulator is sufficiently fast to instantaneously control the

corresponding pressure variable.

Within this setting, we are interested in solving the fol-

lowing problem.

Problem 1 (Adaptive decoupled control). Given a pneuma-

tically driven soft robot as in (5), with joint position and

stiffness vectors given by q and S, respectively, find a suit-

able control law for the input pressure p ensuring:

� decoupled closed-loop control of position and stiffness;

Fig. 1. Depiction of a one-DoF soft robotic arm actuated by a pair of McKibben artificial muscles in antagonistic configuration. Air

pressure in the muscles is controlled by electro-pneumatic regulators and induces muscle contractions, thus allowing position and

stiffness control of the robot’s link.
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� robust asymptotic tracking with a complete lack of

knowledge of inertial and geometric parameters;
� robust asymptotic tracking with a complete lack of

knowledge of the construction-dependent parameters

of the actuation model;
� practical implementability via the use of lower-order

derivatives of joint position and of stiffness estimates.

The problem accounts for the possibility of simultane-

ously controlling position and stiffness, in an accurate way,

by decoupling their commands. It also demands the avoid-

ance of the use of joint acceleration and jerk and of stiffness

time derivatives.

It is finally worth remarking that, because stiffness is not

a measurable quantity, we must rely on either a dynamic

stiffness estimator, such as that proposed by Grioli and

Bicchi (2010), or indirect model-based numerical computa-

tion, depending on other measurable quantities. The first

type of solution needs no information about the system

model, but it can be used only when the link is moving,

whereas the second category is model-based, but it applies

also when the link is at steady state. In this respect, the pre-

mise of stiffness depending on measurable state variables

and control commands is common in practical implementa-

tions, for both electrically driven VSAs (De Luca et al.,

2009; Migliore et al., 2007; Vanderborght et al., 2013) and

pneumatically driven VSAs (Bicchi and Tonietti, 2004;

Colbrunn et al., 2001; Vanderborght et al., 2008). It can be

further assumed, as we also do here, that no coupling

between stiffnesses of different joints exists (Palli et al.,

2008). Following this approach, in our system, stiffness can

be computed according to (3), that is, to the model derived

in the work of Chou and Hannaford (1996).

3. Adaptive decoupled stiffness and

position control

A novel nonlinear adaptive decoupled stiffness and position

control is presented in this section. First, Proposition 1

briefly introduces the nonlinear adaptive control framework

(Slotine and Li, 1991) underlying the proposed one.

Afterwards, Proposition 2 provides the opportunity to

assume uncertainty of both model and actuator parameters.

This leads us to the main result of the article presented in

Theorem 1, where decoupling of position and stiffness con-

trol is achieved by an additional control DoF, that exploits

the actuator matrix’s null-space. Finally, the stability of the

proposed approach is analyzed and proved.

Given a robot with dynamical model of the form as in

(1), it is known by, for example, Slotine and Li (1987) that

the left-hand side expression of such a model can be conve-

niently factorized as the product of a regressor matrix

Y 2 R
n× k and a k-dimensional vector p 2 R

k of uncertain

parameters, that is,

B(q)€q + C(q, _q) _q + G(q)= Y (q, _q, €q)p ð6Þ

It is important to note that the property also allows other

regressor forms to be determined, as we do in the follow-

ing, by linearly combining the matrices B(q) and C(q, _q)
and the vector G(q) of the system’s dynamics. By using this

property, the following result can be proved (cf. the tech-

nique by Slotine and Li (1991)).

Proposition 1. Given any desired joint trajectory

qd : ½0,‘)! R
n, with qd(t) 2 C2, a nonlinear adaptive

controller ensuring asymptotic tracking of the joint evolu-

tion q(t), for all initial parameter estimate p̂0, is described

by the following dynamic system:

_̂p = Kp YT(q, _q, qr, _qr, €qr)s
t = Y (q, _q, qr, _qr, €qr)p̂ + Kd s

ð7Þ

where p̂ and t are the parameter estimate vector and the

joint torque control, respectively, _qr = _qd + L~q,

s = _~q + L~q, ~q = qd � q, Kd and L are two positive-

definite matrices determining the tracking error conver-

gence speed, and Kp is a positive-definite matrix specifying

the parameter adaptation rate.

Moreover, when the input control torque t is applied to

the robot through a flexible actuation system as in (2),

whose model also includes separable uncertain parameters,

the above result can be modified as suggested in the work

by Tonietti and Bicchi (2002).

Proposition 2. Given a flexible joint robotic system with

pneumatic actuation model as in Equation (2), with K a

positive diagonal matrix, the nonlinear adaptive controller

in Equation (7) can be generalized as

_̂P= Kp YT
� (q, _q, _qr, €qr)s

p = F(q)y Y�(q, _q, _qr, €qr)P̂+ Kd s
� �

where P̂ 2 R
k� is a modified parameter vector also includ-

ing the actuator uncertainties, and F(q)yger 2 R
2n× n is

the pseudo-inverse of the known part of the actuator model.

Proof. Given the regressor form in Equation (6) and the

actuator model in Equation (2), the following holds

K F(q)p = Y (q, _q, _qr, €qr)p

Premultiplication by K�1 yields

F(q)p = K�1Y (q, _q, _qr, €qr)p = Y�(q, _q, _qr, €qr)P

where Y� is a suitable matrix allowing the factorization on

the right of all unknown quantities into the modified para-

meter vector P. The remainder of the proof straightfor-

wardly follows. h

Note that although K = KgR is immersed into the para-

meter vector P, the joint pulley radius R must still be known,

as it is part of the nonlinear expression of the actuator matrix.

When both desired stiffness and position signals have to

be tracked simultaneously, a full model that also includes

stiffness dynamics is more appropriate. Under the

280 The International Journal of Robotics Research 40(1)



hypothesis that all system parameters are exactly known,

this objective can be effectively achieved for flexible robots

with electrically driven actuators, by using a dynamic feed-

back linearization approach of De Luca and Lucibello

(1998). As is well known, the solution therein proposed

obtains exact stiffness and position decoupling by exploit-

ing information contained in higher-order derivatives of

such variables.

In contrast, when some system parameters are uncertain

or even completely unknown, accurate and decoupled

control can be achieved by endowing the controlled system

with adaptivity capacity in different ways. One possible

solution to achieve this is described in the following

theorem, which leverages on the control DoF obtained by

projection to the actuator matrix’s null-space. A depiction

of the proposed nonlinear adaptive control is given in

Figure 2.

Theorem 1. Given a soft robot with dynamics as in

Equation (5), if matrix K�1B(q) is positive definite for all

q, an adaptive and decoupling controller generating a

pressure command signal p(t), which allows simultaneous

asymptotic tracking of any desired position and stiffness

reference signals, qd : ½0,‘)! R
n, with qd(t) 2 C2 and

Sd : ½0,‘)! R
n, with Sd(t) 2 C1, is described by the fol-

lowing system with dynamics given by

_n = Fq(q)F(q)?
� �y

(KS(S � Sd)� K�1 _Sd �Fq(q)

d

dt
ðF(q)yt�Þ �Fq(q)F(q)yt��(Fq(q)F(q)?+ _F(q)?)n)

ð8Þ
_̂P= Kp YT

� (q, _q, qr, _qr, €qr)s ð9Þ

and output signal given by

p = F(q)yt�+ F(q)?n ð10Þ

with

t�= Y�(q, _q, _qr, €qr)P̂+ Kd s ð11Þ

where n 2 R
n is an internal controller state, P̂ 2 R

k is the

estimated parameter vector, t� 2 R
n is a control signal

directly affecting the applied torque, Kd , KS , and Kp are

positive-definite matrices determining the convergence speed

of the position tracking error, the stiffness tracking error, and

the parameter estimation error, respectively, Y� is a regressor

matrix for the robot’s position dynamics, F(q)y is the

pseudo-inverse of F(q), F(q)? is a matrix in the null

column-space of F(q), and Fq(q)=
∂F
∂q
(q).

Note: The theorem describes the state form of a dynamic

controller whose internal variables, n and P̂, are updated

according to Equations (8) and (9), and whose output p,

can be algebraically computed by means of Equations (10)

and (11).

Proof. The proof of the theorem is in two stages. First, it

can be proved that the full dynamic model of the robot can

be rewritten in suitable regressor form, and thus that adap-

tive control laws for stiffness and position regulation can

be found; then, it can be shown that such control laws can

be converted into feasible pressure commands.

To begin with, from the property of Equation (6), con-

sider rewriting the following expression in regressor form,

obtained from the first equation of the robot’s dynamics:

K�1 B(q) _s +
1

2
_B(q)s

� �
= K�1 B(q) €qr � €qð Þ+ 1

2
_B(q)s

� �

= K�1 B(q)€qr + C( � ) _q + G(q)+
1

2
_B(q)s

� �
�F(q)p

= Y�(q, _q, _qr, €qr)P�F(q)p

where Y� is a suitable regressor matrix and P is the corre-

sponding parameter vector. Left-multiplying the second

equation of the robot’s dynamic model by K�1 yields

K�1 _S = � _Fq(q)p�Fq(q) _p

Furthermore, having defined a new control torque vector t�
and a stiffness control vector uS as

t�= F(q)p

uS = � _Fq(q)p�Fq(q) _p
ð12Þ

respectively, one obtains the following dynamic equations:

Fig. 2. Depiction of the proposed decoupled nonlinear adaptive and decoupling control approach.
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K�1 B(q) _s +
1

2
_B(q)s

� �
= Y�(q, _q, _qr, €qr)P� t�

K�1 _S = uS

Then, under the hypothesis that K�1B(q) is positive defi-

nite for all q, one can adopt a similar approach as in

Proposition 1 and find adaptive control laws for the new

inputs, by also including, this time, a positive-definite term

depending on stiffness. To this aim, one can choose the

candidate Lyapunov function

V=
1

2
sTK�1B(q)s +

1

2
~PTK�1

p
~P+

1

2
(S � Sd)

TG(q)(S � Sd)

where ~P=P� P̂, P̂ is the parameter estimate vector, and

G(q) is a positive-definite matrix to be properly chosen.

The Lie derivative of V is

_V= _V1 +
1

2
(S � Sd)

T _G(q)(S � Sd)+ (S�Sd)
TG(q)( _S � _Sd)

where

_V 1 = sTK�1 B(q) _s +
1

2
_B(q)s

� �
� ~P

T
K�1

p
_̂P

= sT Y�(q, _q, _qr, €qr)P� t�ð Þ � ~P
T

K�1
p

_̂P

Choosing t� as in Equation (11) leads to

_V1 = � sTKd s + sTY�(q, _q, _qr, €qr) ~P� ~PT K�1
p

_̂P

The transposition of the second addend on the right-hand

side of the above equation, which can be done since it is a

scalar, allows the expression of _V1 to be factorized as

_V1 = � sTKd s + ~PT YT
� (q, _q, _qr, €qr)s � K�1

p
_̂P

� �
Adopting the update rule in Equation (9) for

_̂P makes the

second addend to vanish and, finally, allows _V to be

reduced to

_V =� sTKd s +
1

2
(S � Sd)

T _G(q)(S � Sd)

+ (S � Sd)
TG(q)( _S � _Sd)

Moreover, the choice G(q)= K�1 allows using the stiffness

dynamics equation and is compliant with the positive-

definiteness of V . It also ensures _G(q)= 0, thereby making

the time derivative _V equal to

_V = � sTKd s + (S � Sd)
TK�1( _S � _Sd)

= � sTKd s + (S � Sd)
TuS

Finally, by choosing the stiffness control input as

uS = K�1 _Sd � Ks(S � Sd) ð13Þ

one obtains

_V = � sTKd s � (S � Sd)
TKS(S � Sd)

which establishes the negative definiteness with respect to

stiffness and position tracking errors. It is worth noting that

the parameter estimation convergence is not guaranteed,

but their error remains bounded as it can be found from the

study of the second time derivative and from Barbalat’s

lemma.

Let us now move on to converting these controls into

feasible pressure commands. To achieve this, first assume

that the sought commanded pressure vector has the form

p = A1(q)t�+ A2(q)n

where n is another new control vector, and A1(q) and A2(q)
are two position-dependent matrices to be conveniently

chosen. From the first relation of Equation (12),

F(q)p = t�, one finds that it must be

F(q)A1(q)t�+ F(q)A2(q)n = t�

which can be satisfied if F(q)A1(q)= In and

F(q)A2(q)= 0n, where In and 0n are the identity and the

zero matrix of dimension n. The first of the two conditions

requires that A1(q)= F(q)T F(q)F(q)T
� ��1

= F(q)y,

which is the pseudo-inverse of F(q), whereas the second

condition implies that A2(q)= F(q)?, in which F(q)? is

any matrix in the column null-space of F(q). Therefore,

the commanded pressure vector p can be determined as in

the form

p = F(q)y t�+ F(q)? n

where n is still to be determined. Moreover, after computing

the time derivative of p, given by

_p =
d

dt
F(q)y t�

� �
+ _F(q)?n + F(q)? _n

one can write from Equation (12) that it must hold

uS =� _Fq(q)F(q)yt� � _Fq(q)F(q)?n

�Fq(q)
d

dt
F(q)y t�

� �
+

d

dt
F(q)?
� �

n + F(q)? _n

� �

Substituting in the above equation uS with its expression

from Equation (13) and then solving it for _n allows the dif-

ferential relation to be derived for the controller internal

state n described in Equation (8). For this purpose, first

multiply both sides of the equation by the pseudo-inverse

of Fq(q)F(q)?, as in

Fq(q)F(q)?
� �y

Ks(S � Sd)� K�1 _Sd

� �
=

Fq(q)F(q)?
� �y

b(q)+ _n

with
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b(q)= Fq(q)
d

dt
F(q)yt�

� �
+ _Fq(q)F(q)yt�

+ _Fq(q)F(q)?+ Fq(q)
d

dt
F(q)?
� �� �

n

and then find the expression for _n. This concludes the

search for a feasible and stabilizing pressure command vec-

tor and the theorem’s proof. h

Remark 1. As is well known, while the adaptive control

approach always allows tracking of position and stiffness

references, even with inexact parameter knowledge, no

guarantees can be provided about the convergence of such

parameters (Slotine and Li, 1991). Indeed, once the posi-

tion tracking error e has converged to zero, the variable s

becomes null, and the parameter adaptation stops (see

Equation (9)).

An explicit characterization of the achieved parameter

estimation error is not simple and it is also reference-depen-

dent. Once the position tracking error ~q has converged, the

following holds. By first writing the robot’s dynamics in

regressor form, on the left-hand side, and applying the

adaptive torque, on the right-hand side, we have

Y�( � )P= F(q) F(q)yY�( � )P̂+ F(q)?n
� �

where the variable dependency of matrix Y� has been

omitted for space reasons. The orthogonality construction

gives us independence on variable n, which may in princi-

ple still evolve, thus leading to

Y�(q, _q, qr, _qr, €qr)P= F(q)F(q)yY�(q, _q, qr, _qr, €qr)P̂

and, consequently, to

Y�(q, _q, qr, _qr, €qr) P� P̂
� �

= 0

which finally describes the surface on which the reached

parameter estimation error must lie.

Apparently, when the desired stiffness Sd is time-vary-

ing, the controller depends also on the actuator parameters

K. However, for applications in which Sd is slowly varying

or piecewise constant, the following corollary to Theorem 1

provides a solution independent of the actuator parameters.

Corollary 1. Under the hypotheses of Theorem 1, if the

desired stiffness Sd is slowly varying or piecewise constant,

the nonlinear decoupling and adaptive controller is

described by Equations (9), (10), (11), and

_n = ðFq(q)F(q)?Þy
 

KS(S � Sd)�Fq(q)
d

dt
ðF(q)yt�Þ

�Fq(q)F(q)yt� � (Fq(q)F(q)?+ _F(q)?)n

!

ð14Þ

and, thus, it is independent of the actuator parameters K.

Proof. The proof straightforwardly follows from Theorem

1 by assuming that _Sd = 0. h

Remark 2. By a first interpretation of the formula in

Equation (10), describing the expression of the stabiliz-

ing pressure command, it can be understood that the two

signals t� and n independently control the robot’s posi-

tion and stiffness. While t� directly affects the applied

torque, the differential form of n takes into account for

the term depending on _p, which is present in the stiffness

dynamics.

Remark 3. It is also worth noting that the time derivatives

of the terms Fy(q)t� and F(q)?, involved in Equation (8)

of Theorem 1 and in Equation (14) of Corollary 1, can be

either numerically computed or, more accurately computed

in an analytical way by using the chain rule for differentia-

tion. Indeed, it holds that

d

dt
ðFy(q)t�Þ= Fy

q (q) _qt�+ Fy(q)
∂t�
∂q

_q

The explicit calculation of the Jacobian of t� with respect

to q are reported, for the reader convenience, in Section 5.

An analogous situation occurs when applying backstepping

techniques.

4. Simulation validation

This section presents a first step towards the validation of

the proposed control approach. For this purpose, a two-

DoF, planar soft robot arm, actuated via antagonistic

McKibben artificial muscles, has been considered. The aim

of this section is to show how the proposed method effec-

tively works, when exact knowledge of matrix F(q) is

available. Under such an ideal hypothesis, the only differ-

ence between the regressor form and the system’s model in

Equation (6) is in the values of unknown parameters P.

The reported simulations show indeed how the controller

continuously adjusts the estimated parameter vector P̂, as

the robot’s position q and stiffness S are exactly steered to

the desired values.

Having defined the robot’s configuration vector as

q = (q1, q2)
T, with q1 the arm’s shoulder angle and with q2

its elbow angle, the robot’s dynamic model can be written

in the form of Equation (5). As for the position’s dynamic

equation, the well-known expressions of the inertia and

Coriolis matrices and of the gravity vector are standard
1

and can be found, for example, in the work of Siciliano and

Khatib (2008).

More precisely, referring to the system’s parameters

reported in Table 1, the inertia matrix is

B(q)=
B11(q) B12(q)
B12(q) B22(q)

� �

with
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B11(q)= I1 + m1

l1

2

� �2

+ I2 + m2l2
1 + m2

l2

2

� �2

+ m2l1l2c2

B12(q)= I2 + m2

l2

2

� �2

+
1

2
m2l1l2c2

B22(q)=
1

2
m2l2

2 + I2

the matrix of Coriolis and centrifugal forces is

C(q, _q)=
� 1

2
m2l1s2 _q2 � 1

2
m2l1s2 ( _q1 + _q2)

1
2

m2l1s2 _q1 0

� �

and the vector containing gravitation components is

G(q)=
( 1

2
m1l1 + m2l1)gs1 + 1

2
m2l2gs12

1
2

m2l2gs12

� �

Furthermore, as for the right-hand side of Equation (5),

under the assumption of equal muscle parameters, that is,

K = diag(K1,K1), having denoted with pi, a and pi, b the

pressures of the two artificial muscles of the ith link, for

i 2 f1, 2g, and also referring to Table 2, the actuator model

is given by the formula:

t�= F(q)p ð15Þ

where

t�= (t�, 1, t�, 2)
T = t=K1

p = p1, a, p1, b, p2, a, p2, bð ÞT

and

F(q)=
f1(q) �f1(q) 0 0

0 0 f2(q) �f2(q)

� �

with

fi(q)= (lnom � qiR)
2 � l2

min

Let us now move on to deriving the equations of the

adaptive and decoupling controller of Theorem 1. First, it

can be verified that the condition K�1B(q) be positive

definite is satisfied, thereby allowing the proposed control

approach to be applied. The regressor matrix reads

Y�=
€q1, r €q2, r Y13 s1 s12

0 €q1, r + €q2, r Y23 0 s12

� �

with

Y13 = (2€q1, r + €q2, r)c2 � _q2 _q1 +
1

2
_q2 + _q1, r +

1

2
_q2, r

� �
s2

Y23 = €q1, r c2 + _q2
1 +

1

2
_q1 _q2 �

1

2
_q1, r _q2

� �
s2

and the parameter vector is

P= P1,P2,P3,P4,P5ð ÞT

=
1

K1

I1 + m1
l1
2

� �2
+ I2 + m2(

l2
2
)
2
+ m2l2

1

I2 + m2
l2
2

� �2

1
2

m2l1l2

1
2

m1 + m2

� �
l1g

1
2

m2l2g

0
BBBBBBB@

1
CCCCCCCA

The term F(q)y is the standard Moore–Penrose pseudo-

inverse, which is omitted here for the sake of space,

whereas the null-space projector F(q)? is given by

F(q)?=

f1(q) 0

f1(q) 0

0 f2(q)
0 f2(q)

0
BB@

1
CCA

The internal state of the controller is the two-

dimensional vector n = (n1, n2)
T. Therefore, the sought

adaptive and decoupling controller can be obtained by

implementing the internal state vector dynamics for n in

Equation (8) and the parameter adaptation law in Equation

(9) for P̂, and then computing the adaptive control t� as in

Equation (11) and, finally, the output command pressure p

as in Equation (10).

In order to show the effectiveness of the proposed

approach, results from a typical simulation run are pre-

sented in the following. In the simulation, the robot’s artifi-

cial muscles are initially inflated, so as to reach a preset

stiffness S of 24 Nm/rad and 16 Nm/rad for shoulder and

elbow, respectively. During this initial setup phase, no para-

meter adaptation is executed by setting the matrix gain Kp

Table 2. Definition of the actuator model’s parameters.

Parameter Value Unit Description

R 0.03 m Pulley radius
Kg 0.16 — Actuator parameter
lnom 0.17 m Nominal muscle length
lmin 0.14 m Minimum muscle length

Table 1. Definition and nominal values of the geometric and

inertial parameters of the two-link soft robot. The real values of

these parameters are assumed unknown.

Parameter Value Unit Description

m1 0.44 kg First link mass
m2 0.35 kg Second link mass
l1 0.33 m First link length
l2 0.225 m Second link length
I1 0.004 kgm2 First link inertia
I2 0.0015 kgm2 Second link inertia
g 9.81 m=s2 Gravity constant
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to zero, while as soon as the parameter adaptation is acti-

vated, Kp is set to 35. It is worth noting that larger values

of Kp allow achieving faster parameter adaptation response,

but, depending on how large is the initial estimation error,

attention should be drawn, in order not to drive system to

instability during the very first instants. As for the position

tracking error dynamics, the controller constants are chosen

as Kd = 18 and l = 15. It is important to recall from the

work of Della Santina et al. (2017) that it is preferable to

keep their values low so that natural compliance of the

robot is sustained, by reducing static feedback impact on

the joints’ stiffness. The estimated robot’s parameters P̂
have been chosen to be 10% less than their real values P.

Furthermore, desired position and stiffness trajectories,

qd and Sd, have been designed, so as to include in the simu-

lation three phases relating to three possible use-cases: (1)

stepwise increasing position commands while stiffness is

kept constant, (2) stepwise increasing stiffness commands

while position is kept constant, (3) simultaneous stepwise

commands for position and stiffness. Referring to Figures 3

and 4, the three phases are for t 2 ½0, 190), t 2 ½190, 250),
and t 2 ½250, 350), respectively. Figure 3 shows that, as

soon as a suitable set of values for the estimated parameters

is learnt, all position and stiffness commands are effec-

tively tracked. Most importantly, it is shown that position

commands are followed with almost null influence on the

robot’s joint stiffness and vice versa, thus proving that the
sought decoupling is achieved. Very short transients of the

stiffness can occur, only at the instantaneous changes of

Fig. 3. Simulation run of a two-DoF pneumatic soft robot with initial parameter estimation error of 10% of the real values. Shoulder

and elbow references for position and stiffness are specified first alternately (for t 2 ½0, 250)) and then simultaneously (for

t 2 ½250, 350)). All commands are asymptotically tracked with feasible pressure commands.

Fig. 4. Evolution of the estimated parameter vector for the

simulation scenario of Figure 3. Parameter estimates are rapidly

adjusted at the beginning of the simulation and then remain

bounded.
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positions commands, but no steady-state error remains.

Such transients can be easily avoided by designing

smoother reference signals. The figure also reports the cor-

responding commanded muscle pressures. Figure 4 shows

the adaptation of the components of the estimated para-

meter vector, which, as is well known, do not converge to

the actual values, but remain bounded.

5. Experimental validation

This section presents a final validation of the proposed con-

trol approach, using a pneumatic soft-robot system, GioSte

(Figure 5), which was developed at the University of Pisa

by Tonietti and Bicchi (2002).

5.0.1 Hardware and software setup. The robotic system

consists of an articulated arm with two rotary joints, each

driven by a pair of McKibben muscles in antagonistic

configuration. All muscles receive pressurized air from a

common air compressor source at 8 bars. Inflation and

deflation of each muscle is regulated by a dedicated SMC

ITV-2050 electro-pneumatic valve, which receives voltage

commands in the range of ½0, 6� V. Such voltage commands

are obtained by suitably converting the pressure signals, as

shown later, specified by the proposed controller according

to Equation (10). An ad-hoc valve pre-configuration phase

has been carried out, in order to prevent valve chattering,

by adjusting the pressure response time so as to suit the

current application. The angular positions of the rotary

joints are measured through two optical and incremental

encoders, HEDS 5500 A12, each attached to the shaft of

the corresponding joint pulley. The encoders generate 500

counts per revolution, thus allowing to reach a resolution

of 1:6× 10�3 rad if read in quadrature mode. A National

Instruments PCIe6323 acquisition board is used with its

screw terminal, so as to collect encoder data and send

voltage-based pressure commands to the valves. Real-time

control of the system through implementation of the

proposed control algorithm has been done, by using

Matlab/Simulink 2014a software, which is connected to the

NI acquisition card via input–output drivers.

As for this validation, a single-DoF version of the

GioSte robotic system is first considered, followed by the

results of the two-DoF setup.

5.0.2 Actuator model identification for the one-link

GioSte. A preliminary identification phase has been car-

ried out in order to acquire accurate knowledge of the

actuator model, as required by the hypotheses of Theorem

1. Given the adopted one-link GioSte robot arm, the identi-

fication process has aimed at finding the following four

mappings: (1) pressure-to-voltage for muscle a, (2)

pressure-to-voltage for muscle b, (3) voltage-to-torque, and

(4) voltage-to-stiffness.

The first two mappings have been obtained by applying

specific voltage commands, covering the entire operation

range, to each of the two antagonistic muscles, a and b, and

measuring the corresponding achieved pressures, p1, a and

p1, b. A linear least-squares criterion has been used to deter-

mine the following second-order polynomial approximation

(also depicted in Figure 6):

V1, a = �0:0044p2
1, a + 0:9020p1, a � 0:5115

� �
× 10�5

V1, b = �0:0008p2
1, b + 0:8862p1, b � 0:5157

� �
× 10�5

ð16Þ

The obtained mappings have been validated with a dif-

ferent set of voltage values and proved to be sufficiently

precise, which is also due to the high accuracy of the inter-

nal controllers of each electro-valve.

As for the third and fourth mappings, the two muscles

have been actuated by suitably varying the input voltages

of their valves, and then measuring the finally attained

steady-state joint position q1 when subject to gravity. More

precisely, experiments consisted of probing the entire vol-

tage to torque and stiffness relation, by applying, com-

pletely in open-loop, constant voltages to one muscle and

varying the one of the other muscle. It is important to state

that, during this phase, no form of feedback has been used,

so as to measure only the system’s stiffness, and not that

induced by a control action. The elastic torque t1 has there-

fore been estimated by exploiting the fact that, when the

joint is in the steady state, rotational equilibrium exists and,

thus, from Equation (1) and (2), it holds

ta � tb � tg = 0, with tg = m1g
l1

2

� �
sin (q)

where ta and tb are the two torques applied by the two

muscles, and tg is the gravitational force.

Fig. 5. GioSte: pneumatic soft robot arm designed and

developed at the University of Pisa.
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The joint stiffness S, achieved for a given pair of muscle

voltages, has been derived by using the model of Equation

(3). By using an analogous least-squares fitting algorithm,

the following polynomial approximations have been simul-

taneously found:

t1 = 6:96� 2:34q1 � 0:71q2
1

� �
V1, a

� (7:03 + 2:07q1 � 0:58q2
1)V1, b

S1 = 2:34� 0:57q1ð ÞV1, a + 2:07 + 0:57q1ð ÞV1, b

ð17Þ

The two mappings provide, for every actual angular posi-

tion q1, the torque t1 and the stiffness S1, obtained by

applying some specific pair of voltage values, V1, a and

V1, b.

Finally, the validity of the last mapping, relating the

stiffness model, has been experimentally verified, by mea-

suring, for different positions q1, the change of joint angle

Dq1 induced by a known variation of the gravity force Dtg ,

produced by weights at the link tip of the link. Experiments

showed that the assumed model is reliable enough for the

application. Whereas it is possible to reconstruct more

accurate mappings, by using, for example, force sensors

mounted on tendons, or even torque sensor mounted on the

joint’s shaft, it is true that stiffness is a variable that in real

applications does not require such high precision. Then, it

has been chosen to use the model obtained by Tonietti and

Bicchi (2002) for the experiments in this article.

5.0.3 Experimental results for the one-link GioSte. To eval-

uate and show the effectiveness of the proposed decoupling

nonlinear adaptive control approach, a set of experiments

realizing use-cases similar to those considered for the simu-

lation validation have been carried out. Again, the purpose

here is to show the ability of the controlled shoulder joint to

simultaneously and independently track reference position

and stiffness commands. The implemented use-cases are:

(1) smoothed stepwise position commands with constant

stiffness, (2) smoothed stepwise stiffness commands with

constant position, and (3) simultaneous change of position

and stiffness. Within all the experiments, the following

dynamic model of the one-link GioSte soft-robot has been

used:

I1 + m1

l1

2

� �� �
€q1 + m1g

l1

2

� �
sin (q1)

= K1 f1, a(q1), � f1, b(q1)
� � p1, a

p1, b

� �

_S1 = � K1
_fq, 1, a(q1), � _fq, 1, a(q1)
� � p1, a

p1, b

� �

� K1 fq, 1, a(q1), � fq, 1, a(q1)
� � _p1, a

_p1, b

 !

where the viscous friction term has been neglected. Then,

the regressor matrix from Theorem 1 is

Y�= €q1, r, sin (q1)
� �

and the unknown parameter vector is

P= P1,P2ð ÞT = (I1 + m1

l1

2

� �2

)=K1,m1g
l1

2

� �
=K1

 !T

Moreover, before proceeding to presenting the experimental

results, referring to Remark 3, we can show that the numeri-

cal time differentiation of the term Fy(q1)t�, involved in

Equation (8) of Theorem 1 can be avoided by applying the

chain rule. Indeed, the following holds:

d

dt
Fy(q1)t�

� �
= Fy

q (q1) _q1 t�+ Fy(q1)
∂t�
∂q1

_q1

where

∂t�
∂q1

=
∂

∂q1

Y�(q1, _q1, _q1, r, €q1, r)P̂+ Kd s
� �

=
∂

∂q1

€q1, r, sin (q1)
� �

(P̂1, P̂2)
T

� �
+

∂

∂q1

Kd _q1, d � _q1 + L q1, d � q1ð Þ
� �� �

= cos (q1)P̂2 � KdL

which shows that no information regarding the acceleration

€q1 is, in fact, necessary. As is well known, this fact allows

avoiding noise amplification effects that would occur in

numerical differentiation.

Moving now on to the experiments, we have chosen

desired position and stiffness values that are compliant with

our hardware. Some of the factors playing a role in such

choice are the nominal and minimal muscle lengths and the

maximal muscle pressure (cf. also the work of Medrano-

Fig. 6. Estimated voltage to pressure mappings for two

antagonistic McKibben muscles, actuating the one-link version

of the GioSte robot.
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Cerda et al. (1995)). We have carried out three tests where

the following gain values of the adaptive and decoupling

controller have been chosen: Kd = 2, L = 10, and Kp = 45.

Despite the slower tracking error obtained, such values have

been chosen in order to be able to present some important

features in the following plots.

During the first experiment, whose results are presented

in Figure 7, a stepwise reference signal q1, d(t) for the joint

position, ranging from 0 to 0:3 rad, is given, with a constant

desired stiffness Sd(t)= 10 Nm/rad. The figure shows that,

despite an initial tracking delay, mostly owing to the impre-

cise value of the parameters, all position commands are

asymptotically followed, whereas stiffness is maintained

practically constant. The controlled system is able to cope

with both the uncertainties of the left-hand side of the

model, and with that of the construction-dependent constant

K1 of the pneumatic actuator. Moreover, it also recovers

from the residual error of the identification process, owing

to an inevitably not exact estimation of the nominal and

minimum lengths of the two muscles. Another important

feature to observe is how the controller’s internal state n

evolves, nicely adjusting its value, in order to assure the

sought decoupling. The commanded voltages V1, a and V1, b

remain always within the feasible range. It can also be

observed that the amplitude of the steady-state tracking

error is of the same order of encoder resolution, and thus it

could be reduced through the use of encoders with more

pulses per revolution.

As a complementary second experiment, shown in

Figure 8, the desired stiffness is changed stepwise from 7

to 10 Nm/rad, whereas the desired position is kept constant

at 0:2 rad. Similarly to the previous experiment, the largest

tracking error of both stiffness and position occurs during

an initial phase, when the adaptive control is still trying to

learn a suitable combination of parameter values.

The last of the three experiments combines the two pre-

vious scenarios, including commanded position and stiff-

ness signals that change simultaneously. It can be seen from

Fig. 7. Experiment 1: smoothed stepwise position commands with constant stiffness. The position tracking error gradually decays as

parameter adaptation advances. After adaptation, the tracking error is mostly affected by the noise of pressure regulators and has the

same order of amplitude of the encoder resolution. The impact of position changes on the joint stiffness is negligible as desired.

Estimated parameters, internal control state, and commanded voltages are bounded and smooth.

Fig. 8. Experiment 2: smoothed stepwise stiffness commands with constant position. Dually to the previous experiment, the stiffness

tracking error asymptotically converges. The position tracking error is not affected by the stiffness commands. Estimated parameters,

internal control state, and commanded voltages are bounded and smooth.
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Figure 9 that the adaptive and decoupling controller allows

tracking such references, with practically no interference

with each other.

As shown by De Luca and Lucibello (1998), dynamic

feedback linearization is able to achieve perfect decoupling,

in the absence of measurement noise and model uncertain-

ties. As stated in the introduction, leveraging on the idea

proposed therein of introducing a stiffness dynamics has

allowed us to derive our present adaptive approach, which

has been shown to be an effective solution.

5.0.4 Comparison between open- and closed-loop adaptive

stiffness control. Let us now proceed to further analyze the

performance of the proposed control approach, by showing

the different behavior of the adaptive open-loop control

algorithm described in Tonietti and Bicchi (2002) and the

previously proposed closed-loop stiffness control.

For this purpose, a first set of experiments has been

designed in order to investigate how the two systems

respond to stepwise position commands with different rise

times Tr, while the desired stiffness remains constant, that

is, Sd = �Sd . The comparison has been done by choosing the

controller gain values Kd = 12, L = 1:8, and Kp = 45. First,

Figure 10 reports the behavior of the controlled GioSte

robot with desired position rise time set to Tr = 6:7158 s.

Smoothed position reference steps are applied at t = 0 and

t = 36 s. It can be observed that, during the initial interval,

the open-loop approach is able to more quickly track the

desired position command; in fact, the requirement to adapt

also to the stiffness dynamics provides the algorithm with

some more conservative and slower behavior. After this

first adaptation phase, the closed-loop approach has a simi-

lar response time as the open-loop one, as for what con-

cerns the position, but with the additional advantage that a

smoother position tracking is achieved; however, owing to

the imposed stiffness dynamics, one can note a transient in

the stiffness tracking. It can also be seen that estimated

parameters, the commanded voltages, and the internal con-

trol state n behave well from a numerical standpoint and

remain bounded.

Furthermore, Figure 11 summarizes the two approaches

for three decreasing position rise times, namely Tr = 4:39,

2:20, and 1:65 s. Smoothed position reference steps are

applied at t = 0, 36, and 46 s; they are not reported in the

figures for the sake of clarity. The stiffness in open loop is

constantly maintained to 7 Nm/rad as in the previous experi-

ment of Figure 10. The leftmost plot of the figure shows that

the system controlled via the open-loop stiffness method

starts to experience an oscillatory behavior, more apparent

as Tr decreases, and eventually goes to instability. The two

other plots of the figure, the middle and rightmost, show

that, with the same setup, after some initial oscillations, the

closed-loop stiffness control can preserve the system’s stabi-

lity. Indeed, the residual inaccuracy in the actuator model

identification process may lead to such an oscillatory evolu-

tion, while the introduction of stiffness dynamics has the

further benefit of providing the resulting system additional

inertia. It is, thus, the faster rise time request in the position

command qd(t) mostly responsible for the increase of the

oscillatory and finally unstable behavior of the system con-

trolled via the open-loop stiffness approach.

Proceeding to a second type of experiment, we have

investigated the effect of stepwise stiffness commands on

the joint position. To this aim, the desired position is kept

constant and the stiffness reference is stepwise changing.

Figure 12 reveals that both controlled systems remain sta-

ble, but the effect of stiffness reference change on the posi-

tion is larger in the case of the open-loop solution, which

ultimately also show how our approach can embed the con-

trolled system with better capacity of stiffness to position

decoupling.

Broadly speaking, the fundamental difference between

these two approaches lays in the general principles of open-

and closed-loop control frameworks. The advantage of stiff-

ness regulation has been foreseen by Medrano-Cerda et al.

(1995) and the vision of model-based independent joint

position and stiffness control of electrically driven VSAs

has been theoretically proposed by Palli et al. (2007) and

Palli et al. (2008). The closure of stiffness loop is supposed

to lead to the better performance when the desired reference

Fig. 9. Experiment 3: simultaneous position and stiffness commands. All references are successfully tracked with no apparent mutual

interference as desired.
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profile of stiffness is time varying. Indeed, the inclusion of

dynamics (i.e., an integrator) in the stiffness control allows

the closed-loop system to better cope with the non-modeled

dynamics of the mechanical system. On the other side, the

implementation of the open-loop control by Tonietti and

Bicchi (2002) is easier, which finally drives to the conclu-

sion that specific use-cases will determine the choice of

proper control approach.

Fig. 10. Experiment 4: comparison of the adaptive open-loop (first row) and closed-loop (second row) stiffness control with position

references with rise time Tr = 6:7158 s. During the first interval, for t\40 seconds, the open-loop approach is able to track faster the

desired position command; indeed, the requirement to adapt also to the stiffness dynamics provides the algorithm with some more

conservative and slower behavior, leading to the observed initial lag in the closed-loop response. After this first adaptation phase, the

closed-loop approach has a similar response time as the open-loop approach, as for what it concerns the position, but with the

additional advantage that a smoother position tracking is achieved; however, owing to the imposed stiffness dynamics, one can note a

transience in the stiffness tracking.

Fig. 11. Experiment 5: comparison of open-loop (leftmost) and closed-loop (middle and rightmost) stiffness control for position

references with decreasing rise times. Smoothed position reference steps are applied at t = 0, 36, and 46 s. While the open-loop

solution starts to experience an oscillatory behavior, more apparent as Tr decreases, and eventually goes to instability, the closed-loop

solution, after some initial oscillations, is capable of preserving the system’s stability.
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5.0.5 Experimental validation for the two-link GioSte. In

this subsection, we present results of the validation and per-

formance evaluation of the proposed control law the full

two-DoF robot arm of Figure 5. In this setup, the first link

q1 will act as the robot’s shoulder and the second link q2

will represent its elbow. Similarly to the procedure

described previously for the one-DoF robot, we have car-

ried out an identification process for the two-link GioSte

leading to the following mappings:

t1 = 2:28� 2:87q1 + 2:16q2
1

� �
V1, a

� (2:54 + 2:28q1 + 6:09q2
1)V1, b

t2 = 6:96� 2:34q2 � 0:71q2
2

� �
V2, a

� (7:03 + 2:07q2 � 0:58q2
2)V2, b

S1 = 2:87 + 0:83q1ð ÞV1, a + 2:28� 0:83q1ð ÞV1, b

S2 = 2:34� 0:57q2ð ÞV2, a + 2:07 + 0:57q2ð ÞV2, b

The same mapping as in Equation (16) has been used for

the second link to relate the pressure p2, a and p2, b with the

voltages V2, a and V2, b. Moreover, the controller’s gains are

Kd = diag (K1, d ,K2, d)= diag (15, 2), L = diag(L1,L2)
= diag (8, 8), and Kp = 45I5× 5.

Before moving to the experiments, it is worthwhile to

observe, referring to Remark 3, that the Jacobian matrix

∂t�
∂q

=
∂t�, i
∂qj

� 	
, i, j 2 f1, 2g

includes the following terms:

∂t�, 1
∂q1

=
∂

∂q1

Y�, 1( � )P̂+ K1, d s1

� �
=

∂

∂q1

€q1, r, €q2, r, Y13( � ), s1, s12

� �
P̂

� �
+

∂

∂q1

K1, d _q1, d � _q1 + L1 q1, d � q1ð Þ
� �� �

= L1 s2 _q2 P̂3 + c1P̂4 + c12P̂5 � K1, dL1

∂t�, 1
∂q2

=
∂

∂q2

ðY�, 1(�)P̂+ K1, ds1Þ

=�
 

2€q1, r + €q2, r +
1

2
L2 _q2

� �
s2

+ _q1 +
1

2
_q2 + _q1, r +

1

2
_q2, r

� �
_q2c2

!
P̂3 + c12P̂5

∂t�, 2
∂q1

=
∂

∂q1

Y�, 2(�)P̂+ K2, ds2

� �
=

∂

∂q1

ðð0, €q1, r + €q2, r, Y23(�), 0, s12ÞP̂Þ

+
∂

∂q1

ðK2, dð _q2, d � _q2Þ+ L2ðq2, d � q2ÞÞ

=
1

2
L1 _q2 s2 P̂3 + c12 P̂5

Fig. 12. Experiment 6: adaptive open-loop (first row) and closed-loop (second row) control of stiffness for stepwise stiffness

reference. The controlled system under open-loop stiffness regulation experiences position disturbance during the transience of

stiffness reference. In contrast, the closed-loop control of stiffness can suppress the oscillation of joint position.
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∂t�, 2
∂q2

= _q2
1 +

1

2
_q1 _q2 �

1

2
_q1, r _q2

� �
c2 � €q1, r s2

� �
P̂3

+ c12P̂5 � K2, dL2

Accordingly, no joint acceleration and jerk are also

needed for the two-DoF case.

The shoulder joint is commanded to simultaneously fol-

low smoothed stepwise trajectories ranging from 0 to 0:25

rad for the positions, and 17 to 19 Nm/rad for the stiffness;

the elbow joint is required to track smoothed stepwise tra-

jectories ranging from 0 to 0:15 rad for the positions, and

12 to 14 Nm/rad for the stiffness. The obtained results in

Figure 13 show that independent and simultaneous tracking

capabilities for both position and stiffness desired evolution

are achieved, whereas the estimated parameters converge as

depicted in Figure 14. As anticipated, the largest tracking

error is observed during the adaptation phase, which is due

to the parameter uncertainty, and during the position transi-

ents, caused by the residual coupling between joints. The

change of stiffness reference has a negligible effect on the

position. Thus, the effectiveness of proposed method has

been confirmed also for multi-DoF setups.

6. Conclusion

In this article, a novel approach for adaptive and decoupling

control of position and stiffness in pneumatic soft robots

has been presented. The approach achieves the desired

decoupling by using the control DoF, laying in the kernel

of known part of the actuator matrix, plus an additional

dynamic compensation that is made available by the intro-

duction of the stiffness dynamics. The approach has been

validated first via simulations and through experiments

with a two-DoF soft robot. Validation has shown that joint

position and stiffness are effectively tracked in different

use-cases. A formal proof of the stability of the tracking

error for the approach has also been provided.

The solution has been shown to have several advantages.

First, it is robust to model uncertainties and, if stiffness

Fig. 13. Experiment 7: experimental run of a two-DoF pneumatic soft robot with smoothed stepwise references for position and

stiffness of shoulder and elbow. Tracking errors converge to zero and there is no significant mutual effect between position and

stiffness control. During the transients, a small position tracking error is induced owing to the residual coupling between the joints.

Fig. 14. Evolution of the estimated parameter vector for the

experiment shown in Figure 13. Parameter estimates are adjusted

at the beginning of the experiment and then remain bounded.
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reference is constant or slowly-varying, also to actuator

uncertainties. Second, it requires computation of only the

first time derivative of stiffness and of the second time deri-

vative of position. No further differentiation is needed, thus

simplifying practical implementations. Third, it allows joint

stiffness to be controlled in closed loop, thereby making

the system more capable of following various position tra-

jectory profiles, as shown in experiments. Practically, this

means that joints can achieve faster movements (even with

lower stiffness) when compared with the open-loop case,

hence potentially improving the safety of soft robots when

used for human–robot interaction.

The main limitation of the current approach stems in the

assumption that part of the actuator model is known, which

has required us to perform an initial identification phase.

However, we believe that the approach can be generalized

for fully unknown actuator matrices, as well as for different

classes of pneumatically and electrically driven soft robots.

This objective can be achieved, for example, by using force

or torque sensors, which would allow better estimation of

the stiffness and, thus, more effective closed-loop control.

A second limitation of the current hardware is related to the

present mechanical coupling among joint pulleys, shafts,

and muscles, which is unable to effectively support fast

motions without experiencing slippage and inducing mea-

surement errors. Albeit slower experiments have been

shown, we are confident that better results can be achieved

with a future hardware upgrade by adopting better mechan-

ical solutions for such connections and using more consis-

tent materials for the artificial muscles. With the same

objective of achieving faster motions, but with a different

type of actuators, some seminal work has already been initi-

ated by Lukic et al. (2019), with an electric antagonistic

VSA setup characterized by more reliable mechanical

structures and faster natural dynamics.

It is also worth saying that the scalability of the pro-

posed method, and in fact that of other adaptive control

approaches, relies on the derivation of the regressor form

of a robot’s dynamics. In this respect, very recently, novel

approaches, such as that by Marcucci et al. (2017), have

introduced automatic generation methods, aiming at reduc-

ing the amount of information needed to model and control

a robot manipulator, and thus also potentially improving

the efficiency of the proposed solution.

A final closing comment is connected to the observation

by Albu-Schaeffer and Bicchi (2016) that a lot of work still

has to be done in the field of impedance estimators, as well

as with they usage with VSA mechanisms. We believe that

the development of closed-loop control approaches, such

as ours, will encourage the establishment of theoretical and

technical framework for stiffness estimation and exploita-

tion in advanced soft robotic systems.
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passivity-based approach for trajectory tracking and link-side

damping of compliantly actuated robots. In: 2016 IEEE Inter-

national Conference on Robotics and Automation (ICRA).

IEEE, pp. 1079–1086.

Keppler M, Lakatos D, Ott C and Albu-Schäffer A (2018) Elastic
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