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This paper deals with the design of an extended complex Kalman filter (ECKF) for estimating the state of
an induction motor (IM) model, and for sensorless control of systems employing this type of motor as an
actuator. A complex-valued model is adopted that simultaneously allows a simpler observability analysis
of the system and a more effective state estimation. The observability analysis of this model is first
performed by assuming that a third order ECKF has to be designed, by neglecting the mechanical
equation of the IM model, which is a valid hypothesis when the motor is operated at constant rotor
speed. It is shown that this analysis is more effective and easier than the one performed on the
corresponding real-valued model, as it allows the observability conditions to be directly obtained in
terms of stator current and rotor flux complex-valued vectors. Necessary observability conditions are also
obtained along with the well-known sufficient ones. It is also shown that the complex-valued
implementation allows a reduction of 35% in the computation time w.r.t. the standard real-valued one,
which is obtained thanks to the lower dimensions of the matrices of the ECKF w.r.t. the ones of the real-
valued implementation and the fact that no matrix inversion is required. The effectiveness of the
proposed ECKF is shown by means of simulation in Matlab/Simulink environment and through
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experiments on a real low-power drive.
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1. Introduction

Sensorless control of systems employing induction motors as
actuators requires the estimation of the rotor speed together with
the rotor flux components that cannot be directly measured. The
estimation of the IM rotor speed can be performed by means of two
types of methods, both exploiting the information from stator
current measurement. The former type of method is based on the
recognition of the characteristics (Holtz, 2002; Hurst & Habetler,
1996) of the measured currents, whereas the latter one is a model-
based approach (Rajashekara, Kawamura, & Matsuse, 1996; Vas,
1998). The first type of methods can be invasive if based on the
superimposition of suitable signals to the standard ones (Holtz,
2002), but not invasive if based on spectral analysis of the stator
currents (Hurst & Habetler, 1996). They are also subject to inter-
pretation errors of the above characteristics. The second type of
methods use a priori knowledge of the actual system and are
not invasive since they involve only measured variables. More-
over, their sensitivity to variations of the model's parameters or poor
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knowledge of their values can be countered by using robust estima-
tion techniques. Among these model-based methods, MRAS-type
(Cirrincione, Pucci, Cirrincione, & Capolino, 2004; Tajima & Hori,
1993), Luenberger-type (Cirrincione, Pucci, Cirrincione, & Capolino,
2006; Rajashekara et al., 1996), and sliding mode observers (Ghanes
& Zheng, 2009; Rodic & Jezernik, 2002; Yan, Jin, & Utkin, 2000) are
good examples of deterministic observers, whereas Kalman filters
(Alonge, D'Ippolito, & Sferlazza, 2014) and extended Kalman filters
(Alonge & D'Ippolito, 2010; Kim, Sul, & Park, 1994; Vas, 1998) are
good examples of stochastic estimators.

In this paper the problem of designing a state observer for the
IM consisting of an extended complex-valued Kalman filter is
addressed, based on a complex-valued description of the dynami-
cal behavior of the IM itself (cf. Menaa, Touhami, Ibtiouen, & Fadel,
2007; Petersen & Savkin, 1999; Vas, 1998). The model in question
is of reduced order with state variables given by the complex
stator current, the complex rotor flux, and a real variable repre-
senting the rotor speed. Related to the possibility of building such
a state observer is the study of the observability property of the
complex-valued model. In the standard real-valued framework
this property has been largely studied since the seminal work of
Canudas De Wit, Youssef, Barbot, Martin, and Malrait (2000) and
later in Marino, Tomei, and Verrelli (2010), Ibarra-Rojas, Moreno,
and Espinosa-Pérez (2004), and Ghanes, De Leon, and Glumineau
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(2006). When assuming a constant rotor speed, the adoption of
the complex-valued model allows us to derive necessary observa-
bility conditions, directly obtained in terms of stator current and
rotor flux complex variables, along with the well-known sufficient
ones obtained for the real-valued IM model (Canudas De Wit et al.,
2000; Marino et al., 2010).

Furthermore, it is shown that the sufficient conditions, ensuring
the observability property of the continuous-time complex-valued IM
model, are preserved by a first-order Euler discretization, which is
essential to prove the feasibility of a discrete-time estimator. To this
regard, the use of extended Kalman filters for state estimation of real-
valued IM models, even in speed sensorless configuration, is a well
recognized approach (see e.g. Alonge & D'Ippolito, 2010; Kim et al.,
1994). Recently, techniques allowing the optimization of the para-
meters of such filters have been proposed, based on deterministic
(Alonge & D'Ippolito, 2010) as well as stochastic approaches (Buyamin,
2007). From a complexity viewpoint, the proposed ECKF allows the
implementation of a state observer with a substantial reduction
(around 35%) of the required computation time. This reduction is
achieved since all involved matrices have lower dimensions than
those obtained from the corresponding real-valued models, and no
matrix inversion is needed as the system output is a scalar variable
represented by the complex-valued stator current. Moreover, the
ability of our ECKF to produce accurate estimates of the IM state is
shown by means of simulation in Matlab/Simulink environment. Its
practical applicability is successfully tested by means of experiments
on a real low power drive, where the output of the filter is given to a
simple proportional-integral controller.

The paper is organized as follows. Section 2 describes the
complex-valued model of the IM. Section 3 deals with observa-
bility analysis of the model and provides necessary and sufficient
observability conditions for it. Section 4 shows that the sufficient
observability conditions are preserved under time-discretization.
Section 5 describes the ECKFE. Section 6 shows simulation results of
a sensorless closed loop control system in which the estimator
consists of an ECKFE. Finally, Section 7 presents the experimental
results, which shows the effectiveness of the proposed ECKF.

2. Complex model of the induction motor

As is well known, the standard mathematical model of the IM
in stationary frame is given by

lg= — g +a0¥W, +f1W 0 +f1Uq, (1

Table 1
Parameters of the induction motor model.

Stator current component along a-axis (f-axis) fixed
to the stator, A

U, (uy) Stator voltage component along a-axis (f-axis), V
Vo (wp) Scaled rotor flux along a-axis (p-axis), Wb

1) Rotor speed, el. rad/s

iy (ip)

Rs (Ls) Stator resistance (inductance), Q (H)
Lm (L) Mutual (rotor) inductance, H
R, Rotor resistance, Q
o (: ILT,) rotor time constant, s
3

Le 12 . .

=L —L—"‘ stator equivalent inductance, H

T
F Viscous friction coefficient, Nm s
t Load torque, N m
Ju Inertia coefficient, N m s*
p Pole pairs
Ts Sampling time, s
-1 Euclidean vector norm, corresponding to the
induced norm for matrices

I Identity matrix of order n

ip=—anig+any;—f1y,0+fug, 2
Y o = A21iq — AW o — YW, 3)
Y p = A21ip — oy 3+ @, 4)
® = —a330—f3(laW 3 —igy o) — &5t €)]
where
1 L—L, B CLi—L
an _E<RS+ . ) app =L 4y = P
1 F 1 2 p? p

ay) =—, d33=-—, =—, === =,

2= 33 Tn fi L f3 3 &5 In

and the other symbols are defined in Table 1.

Since our objective is that of designing an EKF that is able to
estimate the whole system state starting from the measure of the
stator currents, when speed varies slowly between two sample
times, the mechanical equation can be neglected by putting the
second member of (5) equal to zero. Moreover, with the aim of
reducing the order of the model, the following complex state and
input vectors are defined:

X=(X1,X2,X3)" = (L,y, 0)" = (ia+Jig, Wo+iy s, @),
and
U= Uq+jug,

where j is the imaginary unit. In terms of the new complex state
variables, choosing the complex current i as output and the
complex stator voltage u as input, the dynamic model (1)-(5)
becomes

X1 = —anx;+fi(axn —jx3)x +f1u, (6)
Xy = ap1X1 — (A22 —jX3)X2, (7)
X3=0, ®)
y=hx =x. 9

3. Observability conditions of the complex model

In this section the observability property of the dynamic model
(6)-(9) is investigated. As is well known, the model in question is
locally weakly observable if the observability matrix, of order
oo x 1, given by

dh(x)
deh(X)
dLFhx)

>

where dh(x) is the gradient of h at x, L¢h(x) is the Lie derivative of h
along f, Lfh(x) = L;Lf ~'h(x), and
—ay1X1 +f1(az —jx3)x2 +f1u,
a21X1 — (A22 —jX3)X2, ,
0

fxu)=

has rank equal to n.
That being stated, the following theorem gives necessary and
sufficient conditions for the observability of the model (6)-(9).

Theorem 1. Suppose that stator current measures, y(t) = x(t) are
available over an infinite time period t € [0, o). Then, the IM model
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(6)-(9) is locally weakly observable if, and only if
wM£0 or iVs0.

Moreover, if u(t) is an analytical time-varying function, then the IM
model is globally weakly observable, i.e. it is weakly observable at
every initial states.

Proof. Observing that the model (6)-(9) is single-output, the Lie
derivative Lth(x)=y® =x{". It follows that matrix O can be
obtained by computing the successive time-derivatives of x;.
Taking into account that x3 =0, it is easy to verify that

YO =XV = — a1 %1 +f1 (@22 —jx3)%0 +f 11, (10)
and
yo =X(11) = —a11x(]i"1’+f](a22 —J'X3)X(2i_l)+f1u("71), an

for i > 1. Moreover, from (7) and (8), the following is obtained:

x(zi)=az1x(1i7])*(022*]‘X3)X(2i71)’ =23, ... 12)

Consider also the following gradients of x;, x{"" and x'?:

a
dx, = W= (1,0,0),

0

1 1 . )
X! = &X(l ' =(—a.f1(a2 —jx3), —jf1%2),

d .
dx @) =&x‘]2) — a1 dXV + £ (az —jx3)dx +(0,0, —jf 1x3).
A first sufficient observability condition is obtained considering
the following square matrix given by the first three rows of O:

01 = ((dxp)" (@), (@dxH),
whose determinant

det(01) = —jf;(azs —jx3)xy” (13)

vanishes only for X =0, since the solution x3= —ja,, is not
admissible being the rotor speed variable x3 a real number. The
states corresponding to x(” 0 are given by

(x: x(l) ={(x1,ax1(ax —jX3)71X1>X3)T}~ (14

In order to investigate on the model observability at the above
states, one has to further proceed in the derivation of the system
output function h(x), computing the derivatives for x“) 0. The
gradient of the third temporal derivative of y, obtamed from (11)
for i=3, is given by

dx = — a1 dXP +f1(az —jx3) dXP +(0,0, —jf 1x5),

which, particularized for x}"’ = 0, becomes

dX = AC)(— a1, f1(a2 —jxs), —if1%2)+(0,0, —jf 1x),

(2)

where A(X) = a2, +f;az1(az —jx;). Since X =ayx{" for x =0,

the determinant of the matrix
02 = ((dx)", (@), @x)")"
results

det(0) = —jfTazi(az —jx;)x". (15)

Therefore, the matrix O, has full rank if, and only if, x{"” # 0, which
completes the sufficiency proof of the first part of the theorem, i.e.
that the model (6)-(9) is locally weakly observable if x“) #0 or
X" 0. By inspection of (6) and (7), it is observed that xV=0
1mp11es x“’ 0 and vice versa, u(t) being constant. Consequently,
the candldate unobservable states belong to the set £2 consisting of
the states corresponding to x(]) 0 and x“):o, which can be
parameterized by the rotor speed X3 as follows:

= x:x =xV = 0) = (%1, X2(%3), X3)}, (16)

with

X1 = (a1 —anfy) ' (Fiuw),
X2(X3) = (a2 —jx3) " (a1 —axnf) ~ (@ fiw).

To prove the necessity, it needs to show that, starting from any
two initial states X,X* e 2, with X = (X1,X>(X3),%X3)" and X* = (%1,
xz(Y’;),X"g)T, the system displays the same output function, i.e.

Y(t,X,u)=y(t,x*,u), forall t. 17)

which means that €2 consists of unobservable states.

To this purpose, observe that the model in (6)-(9) can be solved
in two steps as follows: first, the third equation is integrated and
the following is obtained:

X3(t)=X3’0, (18)

where x5 is the initial rotor speed; by substituting (18) into the
first two equations of the model, a linear dynamic system is
obtained whose solution is given by

Xx1(t) ixs0 X1,0 t Ao
<X2(t)> = Jt((Xz,o) +/0 e Ao Bu(z) dr),

where x; ¢ and x, are two initial states and

—day fl(a22—jx3,o)> B:<f1>‘

A(x30) = < a1 —(a22—jX3g) 0

Based on this, (17) can be rewritten as follows:
o o Lot
V(& X, W) —y(t, X%, u) = C(eA®K —eA®)x*) 4 C / (eNx)=m)
0

— AN -D)By(7) dr, (19)

for all t, where € =(1,0). From (19), a necessary and sufficient
condition for (17) to hold is that the time derivatives of order
i=0,1,... of the condition itself are all simultaneously null, at any
arbitrary fixed instant. The derivatives of order i=0 and i=1,
evaluated at t=0, give the conditions

o ok
X1—Xx7=0,
—a11(®X1 — X)) +f1((a22 — jX3)X2(X3) + (A22 — jX5)X2(X3)) = 0,

that are satisfied by all, and only, the points in £2. Moreover, recall
that, whenever two functions ¢(t) and y(t) have the same
derivatives of order k w.r.t. the independent variable t, the
successive derivatives must also be the same. This can be proved
by recursive application of the relation

P 0=S90 0=

By choosing ¢(t) = y(t,X,u)—y(t,X*,u) and y(t) =0, and observing
that the two functions have equal derivatives of order i=1, it can
be concluded that the successive derivatives introduce no further
indistinguishability constraints, and thus every pair of points X and
x* in £ is indistinguishable. This also proves the necessity of the
observability condition stated in the first part of the theorem. In
fact, assuming by contradiction that the model (6)-(9) is weakly
observable and the conditions y 0 or iV’ % 0 are not satisfied,
ie. yM=0ori"=0, the model displays a set of states, &2,
containing indistinguishable states, which is in contrast with the
hypothesis of observability.

Let us now move on to the second part of the theorem. The
fourth temporal derivative of the system output is obtained from
(11) for i=4, and the corresponding gradient is given by

r“‘)(t) y D).

dxX(P = —ayy dx) +f1(az —jixs) dxy) +B(x)
=[—a11+0az1f1(axn —jx3)] dX(3)+B(x)
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with B(x) = (0,0, —jf;x5). This gradient, particularized for x{" =0

and xy" = 0, becomes

XY = —a11(0.f 1 (a22 —jx3), —jf 1X2)

+f1(az2 —jx3)(0, f1(az —jx3), —if1X2)+(0,0, —Jf1x(23))-
Then, it is possible to compute the following matrix Os, given by
03 = ((dx)", (@), (@),
whose determinant, particularized for "’ = 0 and x{" = 0, is given by
det(03) = —jfi(az —jxs)anu, (20)

which can only vanish for uV = 0. Furthermore, the determinant of
the generic observability matrix Oy, constructed with the gradient of
the kth output function derivative, i.e.

Op = ((dx)T, ()T, (@)1,

can only vanish if u® = 0. This completes the proof of the theorem
because it shows that, for any analytic time-varying input function u
(t), there exists at least one determinant that is not null. ©

Remark 1. Comparing these results with the literature, it is useful
to underline that the most employed criterion for assessing
observability property for nonlinear systems is the rank condition,
defined on a oo x n matrix, which gives sufficient conditions
(Canudas De Wit et al,, 2000; Hermann & Krener, 1977; Marino
et al., 2010; Reif et al., 1999). In Canudas De Wit et al. (2000), the
rank condition is used for obtaining also necessary conditions
considering a sixth order EKF which includes the mechanical
equation and defines an augmented state vector including the
torque as the sixth state variable. In this paper, instead, the rank
condition is used as a sufficient condition for observability, as it is
claimed in the literature, and we introduce new arguments of
analysis for obtaining necessary conditions for the fifth order EKF.
These arguments regard the determination of the states of the fifth
order model of the system at constant speed which are candidate
to be unobservable, and the successive testing that these states are
effectively observable, providing that the input u(t) is time-varying
and continuously differentiable. Moreover, the observability prop-
erty is verified considering the discrete-time model of the above
fifth order system, which is the correct property to be verified,
taking into account that the model is used for designing a discrete-
time EKF.

4. Observability of the discrete-time model

In this section it is shown that the observability propriety of the
IM is preserved by a time discretization. By applying the first-order
Euler approximation to the continuous-time dynamics in (6)-(9),
the following discrete-time IM model can be obtained

x1(k+1) = d11x:1(k) +f 1 (@22 — X3 ()2 (k) +f u(k),
Xa(k4-1) = Ga1X1 (k) + (1 = Ts(azz —jx3(k)))xa (k),
x3(k+1) =x3(k), 21

where 11 =1—-aTs, fl =f1Ts, G271 = a1 Ts, with system output
given by

Y& = h(x(k)) = x1 (k).

Let us denote with x(k+1) = g(x(k)) the above dynamic model
in (21). The first row of the observability matrix O is given by

_ oh(x)

dhy X

=(1 0 0),
x(k)

which is independent of the value of x(k). The Jacobian matrix of g
at x(k) is given by

28 ann fian—jxsk)  —jf1x2(k)
3 =| axn 1-Ts(axn—jxs3k) jTxa(k) |- (22)
X x(k)
0 0 1

The second row of the observability matrix O is given by

of %)
xtk+1) 90X

_ oh(x)
dhz =5

x(k)
=(an filan—jxsk) —if 1x2(k)).
The Jacobian matrix of & at x(k+1) can be easily obtained from

(22) by replacing x(k) with x(k+1). Thus, the third row of the
observability matrix O is given by

dhe — oh(x) 9g(x) g (x)
3=
ox x(k+2) ox x(k+1) ox x(k)
N = s og(x
=(an fink+1) —Jf1X2(k+1))%
x(k)
=(A B 0),

where 7(k) = az; —jx3(k), A is a term whose expression can be
omitted, since it does not affect the value of the observability
matrix determinant, whilst B and C are given by

B =f1(@11nk)+1 —Tskmk+1)),
C=jf 1(nk+1D)Tsxz(k) —x2(k+1)—a11x2(k)).

Finally, by exploiting the third equation of the dynamics model,
x3(k+1) =x3(k), it is possible to find, by direct computation, that
the determinant of the observability matrix O is given by

det(0) = jf 1 (k) (k) — x5 (k + 1)),

which can only vanish for constant rotor flux, i.e. X,(k+1) = x5(k).
Hence, the discrete-time model in (21) is locally weakly observable
if the rotor flux is not constant, i.e. xo(k+1) # x,(k).

5. Filter derivation

To obtain an estimate of the complex-valued state x of the
nonlinear model (6)-(9), an extended complex Kalman filter has to
be considered (Petersen & Savkin, 1999). The filter has the same
structure of a standard real EKF, except for the fact that the
covariance matrix of the estimation error is Hermitian, i.e.
P, =P!, and the dynamical matrix of the underlying linearized
model has complex-valued entries.

As a first step, a stochastic discrete-time model of the IM is
obtained by applying Euler's approximation method to the (6)-(9).
This yields

{ Xpq 1= &r(Xp, Up) + Wy,

23
Y =hi+vy, 23

where X :(ka,xz,k,xik)T, wy and v, are white Gaussian noise
processes with covariance matrices given by Qi and Ry, respec-
tively, and

hye =X 1,

A11X1 g +f 1 (A2 —jX3 )X 1 +f 1 Uk
gr=| 21Xy +(1—Tsa+jTX310X0k
X3k

The processes wy and v, are assumed to be uncorrelated between
them and w.r.t. the system state variables.
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The ECKF is described by the following recursive algorithm
involving, as usual, time update and a measurement update phases.
During the kth time update phase, a priori estimates of the system
state and of the error covariance matrix are computed as follows:

Xier 1k = 8k Rige Uk)» (24)

Py 11k = FiPuiFi + Qi (25)

where F is the dynamic matrix of the linearized model and is
given by

. 28, (%) - f:ln : f1(02; —f’f;,k\k) _‘;;flxz,k\k
K=" | . T |92 —Anls+JlX3 e JLsXo ik
= Ruk 0 0 1

During the kth measurement update phase, a posteriori estimates
are computed as follows:

Xk = Xpgk— 1+ LYy — HiXpge— 1) (26)
Pk = Py 1 — LeHikPrge -1 (27)
where

Lx = Pk — 1Hi(HPyge— 1 H +Ri) ™1, (28)
and Hj, is the output matrix of the linearized model and is given by

ah(Xk)
Hy= =[1 0 0]
' X X =Ry

The filter is initialized, at the instant k=0, with X0=0 and
Pojo =Py, where Pg e R3*3 represents the initial estimate error
covariance.

Remark 2. It is worth noting that the following facts are the
rational reasons for the processing time reduction:

1. The reduction of the order of the filter lead to a reduction of the
number of operations as shown in Grewal and Andrews (2011,
Table 7.2), where the presented formulas demonstrate that the
number of operations increases with the order of all the
involved matrices.

2. No matrix inversion is required in the proposed ECKF, indeed in
(28) the term (Hy Py _1Hj, +Ry) is a scalar (instead it is a matrix
in the 5th order EKF), moreover this scalar is also real because
H and R contain real elements and it is easy to see that P matrix
contains only real elements. So the operation of matrix inver-
sion that is necessary in the classic 5th order EKF is translated
in the inverse of a real number in the proposed ECKF.

3. In the standard real-valued implementation the complexity of
the model can be reduced taking into consideration that many
elements of matrix H are zeros and manipulating the relations
of the filter (Hilairet, Auger, & Darengosse, 2000). This fact is
automatically included in the present complex formulation.

4. Matrices Q, R, Py, Pyr—1, Ly have real elements also in the
complex form of the EKF, while their order is 3 instead of 5, as
in the standard real-valued implementation.

It is worth noting that in the literature the problem of reducing the
time of complexity of the estimation process has been dealt with
by some authors, such as Hilairet, Auger, and Berthelot (2009,
2000). More precisely, Hilairet et al. (2000) proposed a more
efficient filtering process which exploits the structural form of the
IM model, while Hilairet et al. (2009) obtained an improvement of
25% by deriving a two-stage EKF that is based on the procedure
described in Hsieh and Chen (1999) and Hsieh (2003) and that
uses suitable transformation matrices.

6. Simulation results

The proposed ECKF estimator has been evaluated by means of
simulations that have been carried out in the Matlab/Simulink
environment. The Simulink model includes the real-valued IM
model (1)-(5), the ECKF estimator (24)-(28), and the controller. As
for the IM model, the following nominal parameters have been
used that have been estimated according to the procedure
described by Alonge, D'ippolito, and Raimondi (2001) and that
are related to a real 0.75-kW IM:

Ry =15.6808 2, L;=0.5236H, L.=4.30x 10 2H,
7,=669x107%s, p=2, J,=56x10">Nms?
F=23x10"3Nms.

A field oriented vector controller, such as that described by e.g.
Vas (1998) and Leonhard (2001), has been realized, which involves
four PI sub-controllers that have been designed as described
by Alonge, D'Ippolito, Raimondi, and Urso (2001). The flux and
speed loops have been closed by means of the proposed ECKF
providing a full estimation of the IM's state. A frequency of 10 kHz
has been adopted for the execution of both the controller and
the ECKF.

As is well known, the tuning of the values of the covariance
matrices Q and R is still an open problem. In the majority of the
papers in the literature the values of the matrices Q and R are
preassigned or computed based on a trial-and-error procedure. This
is the reason why in different papers different values are proposed
for the two matrices although they are determined for the same
prototype. Hilairet et al. (2000, 2009) provided a rule based on the
minimization of the mean square error between the estimated
variables and the actual ones. Our approach has been that of fixing
the covariance matrix R=1 and then determining the covariance
matrix Q by the trial-and-error method. This approach is theoreti-
cally justified by the known fact that only the ratios between the
elements of Q and R affect the system behavior (Bittanti & Savaresi,
2000). By doing this we have determined Q = diag(1,10~3,10).

6.1. Robustness analysis

In the following a robustness analysis of the proposed ECKF is
carried out, by evaluating its ability to produce accurate state
estimates also when the model parameters are varied. A similar
study is carried out by Alonge and D'Ippolito (2007) for a reduced-
order rotor flux optimal observer. The ECKF has been implemented
with detuned parameters, while the IM model contains nominal
parameters.

A first study is carried out by analyzing the behavior of the
ECKF when the IM is operated at rated rotor speed and rated load.
Fig. 1 shows the steady-state estimation errors when the mutual
inductance L, the rotor resistance R,, and the rotor resistance R;
are varied. More precisely, Fig. 1Ta-c shows the flux estimation
error as mutual inductance is increased up to 50% of its nominal
value, the rotor resistance up to 300%, and stator resistance up to
50%, respectively (in the figures the modified values are indicated
by the subscript m’). Fig. 1d-f reports results of the same analysis
as for what it concerns the rotor speed estimation error. As it can
be seen, the influence of these parameters’ variations is small,
which shows a good robustness of the ECKF. A different behavior
can be observed when the machine operates at low speed (Fig. 2),
when a small variation of the stator resistance produces a high
error in the flux and speed estimates (cf. Fig. 2c and f). Moreover, it
is worth noting that Fig. 1a also reveals that a variation of L, up to
50% of its nominal value can produce a high flux estimation error
of 40%, even at rated, low rotor speed.
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From this analysis it is clear that the more critical condition
is a variation of the stator resistance when the machine is operated
at low speed. Therefore, it is of particularly important an
accurate R; estimation which, normally, is not a problem, because
it could be measured directly. Obviously the main source of
variation is temperature, so in practical application R; can
be scheduled depending on motor temperature, but it is not
trivial.

As for what it concerns the sensitivity of the ECKF to noisy
measurement, Table 2 reports the mean and the standard devia-
tions of the rotor speed and of the flux estimation errors, in
the absence of noise and when a white noise is superimposed to
the measured signal. As it can be seen the ECKF is robust to
noise, since both the means and the standard deviations of the
estimation errors remain limited and small also in the presence
of noise.

6.2. Closed loop simulation results

In order to assess the behavior of the closed loop system, consisting
of the IM model, a Pl-based controller, and the ECKF, we have carried
out the following simulation. At the beginning of the simulation a null
reference signal is specified for the rotor speed and a step signal with
an amplitude of 1 Wb is specified as the rotor flux reference. After 1 s,
a step signal with an amplitude of 100 rad/s is specified as the rotor
speed reference, while after other 2 s a step signal of 3 N m is applied
as the input load torque. Figs. 3-6 summarize the most significant
results of the simulation, which we can now comment in view of
Theorem 1. By focusing on Figs. 3 and 6 it is possible to see that, when
the IM is fluxed at a zero reference speed, the stator current com-
ponents and the rotor flux become constant, after a short transient, as
well as the two stator voltages. In this initial instant, the observability
conditions of Theorem 1 are not satisfied, but the ECKF is still able to
correctly estimate the rotor speed since also the load torque is null. In
the presence of a non-null input load torque signal, as long as the rotor

speed signal is also not null, the observability conditions of Theorem 1
are met and the ECKF can correctly estimate the system state (cf. the
figures during the interval [3,5]). As soon as the rotor speed
approaches zero and an active load torque is applied while the IM is
still fluxed, the observability conditions of Theorem 1 are not satisfied.
Under these conditions the ECKF is unable to correctly estimate the
system state. Indeed the model (1)-(5) works at constant current,
without motor torque production, therefore the speed becomes
negative and converges to a value such that the load torque matches
the viscous friction torque, whereas ECKF always gives a speed equal
to zero. It is worth noticing that this operating condition is critical for
every model-based estimator or observer.

7. Experimental results

In this section experimental results are presented validating
the proposed 5th order ECKF on the experimental viewpoint. To
this purpose, a closed loop control system has been realized that is
composed of the above IM, supplied by a voltage source inverter, a
powder brake which applies the load t; to the motor, a four-loop
Pl-type controller, already described in Section 6, and the pro-
posed ECKF which computes online state estimates that are used
by the controller. The IM has been operated with a rotor flux of
1 Wb. Both the controller and the estimator ECKF have been
implemented on a platform involving a dSPACE 1103 micro-
controller, operating under the Matlab/Simulink environment.
The use of the dSPACE platform is particularly important since it
allows rapid prototyping of the control system and a real-time
execution of it. The covariance matrices Q, and R, have been
assumed to be constant and equal to Q =diag(1,1073,10) and
R=1 (as in simulation tests). The IM has been fluxed during the
first 0.5 s, and the stator currents have been measured by using
two Hall-effect transducers.
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Fig. 1. Simulation results at rated rotor speed (150 rad/s) and rated load, showing robustness performance of the proposed ECKF estimator: (a) flux error vs. L, variation,
(b) flux error vs. R, variation, (c) flux error vs. R variation, (d) speed error vs. L, variation, (e) speed error vs. R, variation, and (f) speed error vs. R, variation.
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Table 2

Noise sensitivity of ECKF.

Type of test No noisy measures Noisy measures

Test at 150 rad/s

Standard deviation of the speed (rad/s) 0.05 0.7
Standard deviation of the flux estimate (Wb) 0.04 0.05
Mean error of the speed estimate (%) 0 0
Mean error of the flux estimate (%) 0 0
Test at 5 rad/s
Standard deviation of the speed (rad/s) 0.06 0.5
Standard deviation of the flux estimate (Wb) 0.02 0.04
Mean error of the speed estimate (%) 0 0
Mean error of the flux estimate (%) 0 0
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Fig. 4. Norm of the rotor flux, |x,x|, and of the flux estimation error,
eyk = X2 x| —|X2k|, applying a speed step of 100rad/s and a load torque, with
feedback from ECKF.

Fig. 3. Rotor speed X3 and estimation error e3 = w,  — @, applying a speed step
of 100 rad/s and a load torque, with feedback from ECKF.
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Two experiments have been performed, one at high rotor speed
and with load (see Fig. 7), and one at low rotor speed (Fig. 8). The
behavior of the system at high speed is satisfactory as discussed in
the following. The rotor speed correctly tracks the reference one,
with relatively high error only during a first transient (cf. Fig. 7e
and f), and reaches the steady-state operations without final error.
In the presence of the load torque signal shown in Fig. 7d, whose
value is 3 N m, the speed tracking error is negligible. By applying a
descended ramp reference speed, when the speed approaches
zero, the tracking error initially increases up to 4 rad/s, but rapidly
converges afterward to zero. During steady-state operation at
—150 rad/s, the load torque is removed (at t=13 s) without speed
error, whereas a speed error of about 9rad/s occurs when the
reference speed increases to lead the motor at the standstill. The
rotor flux reaches a value of 1 Wb and remains almost constant
during the entire duration of the experiments, except for opera-
tions at zero reference speed, when the rotor flux varies from 0.92
to 1.08. The stator currents are under the maximum allowed
values during all the operating conditions. Note that, since the
load torque is measured by a sensor that is inserted into the brake,
the oscillations that are present in it are not caused by the
controller or the estimator designed for the experiments, but
rather from the load itself. At low rotor speed the behavior of
the system is also satisfactory up to a reference speed of 5rad/s
(see Fig. 8e). At 2 rad/s rotor speed a transient oscillation of the
tracking error occurs, where a slow convergence to the steady
state can be observed. The estimation of the rotor flux appears
accurate during all the operating conditions. This fact can also be
verified indirectly, by observing that the closed-loop system nicely
behaves during all the above operating conditions.

A second experiment has been performed with the aim of
analyzing the behavior of the real system w.r.t. observability
conditions of Theorem 1. The experiment starts by giving zero
reference signal for the rotor speed and 1-Wb signal for the rotor
flux reference in order to flux the IM. At the instant t=1 s a 15-rad/s
reference signal is applied for the rotor speed, and at the instant
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Fig. 7. Experimental results at high rotor speed: (a) stator current along a-axis in fixed frame, (b) stator current along s-axis in fixed frame, (c) amplitude of the rotor flux
vector, (d) applied load torque, (e) reference, estimated and actual speed, and (f) speed estimation error e, = w,j —@; .
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Fig. 9. Experimental results at low rotor speed and load: (a) reference, estimated and measured speed and (b) applied load torque.

t=2s a load torque command of 2 N m is applied to the motor by
using the powder brake. Fig. 9 reports the result of this experiment
and shows that an accurate estimation of the rotor speed is
obtained, also when the IM operates at low speed and with load
torque. Furthermore, Fig. 8d and e shows that, when the rotor speed
decreases down to 2 rad/s, the speed estimate degrades as it can be
expected by the fact that the IM is operating in the neighborhood of
the region where the observability conditions are not met. A similar
behavior can be observed when the rotor speed reference signal is
reversed from a positive to a negative value. As the real rotor speed
approaches zero, the speed estimation error increases, but then it
converges again to zero when the IM leaves the region where the

observability conditions are not met (Fig. 7e and f). Finally, at zero
reference speed, the filter gives the correct speed only at zero load
torque (see last time interval in Fig. 7e).

It should be finally said that the complex-valued model of the
IM describes exactly the same behavior of the more traditional 5th
order model. Therefore, the proposed ECKF produces exactly the
same results of the corresponding more traditional EKF, generated
based on the 5th order IM model under the hypothesis of constant
speed, i.e. @ =0. While it is already apparent that the complex-
valued model allows an easier and more compact observability
analysis, its advantage also concerns the fact that the ECKF
requires lower computational effort, as discussed in Remark 2.
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Processing of both the proposed ECKF and the conventional 5th
order EKEF, the latter being shaped by using Simulink blocks and an
ad hoc 2 x 2 inversion algorithm, shows that a 35% reduction time
is obtained with the ECKF.

8. Conclusion

In this work necessary and sufficient conditions for the local
weak observability of a complex-valued model of the IM were
provided. An ECKF has been designed to estimate the state of the
IM during different operating conditions, whose estimation prop-
erty was evaluated through simulations in the Matlab-Simulink
environment. The effectiveness of the ECKF was also tested by
employing a dSPACE micro-controller on an experimental testbed.
Results showed that, as long as the observability conditions of
Theorem 1 are met, the ECKF is able to provide accurate state
estimates, with or without a load torque. It is worth noticing that
the ECKF can correctly operate even with low rotor speed (@ — 0),
as long as the input stator voltage is varying. Moreover, the
implementation of the complex-valued state estimator was shown
to be advantageous over the standard real-valued filter, in terms of
a 35% reduction of the required computation time.
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