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We provide a distributed method to partition a large set of data in clusters, characterized by small in-group and large out-group
distances.We assume awireless sensors network in which each sensor is given a large set of data and the objective is to provide a way
to group the sensors in homogeneous clusters by information type. In previous literature, the desired number of clusters must be
specified a priori by the user. In our approach, the clusters are constrained to have centroids with a distance at least 𝜀 between them
and the number of desired clusters is not specified. Although traditional algorithms fail to solve the problem with this constraint, it
can help obtain a better clustering. In this paper, a solution based on the Hegselmann-Krause opinion dynamics model is proposed
to find an admissible, although suboptimal, solution. The Hegselmann-Krause model is a centralized algorithm; here we provide a
distributed implementation, based on a combination of distributed consensus algorithms. A comparison with 𝑘-means algorithm
concludes the paper.

1. Introduction

The problem of grouping large amounts of data into a small
number of subsets with some common features among the
elements (often referred to as the data clustering problem) has
attracted the work of several researchers in different fields,
ranging from statistics to imagine analysis and bioinformatics
[1–3].

Data clustering techniques are developed to partition an
initial set of observation data into collections with small in-
group distances and big out-group distances.

Among the existing techniques, one of the most used is
the 𝑘-means algorithmor its successive extensions (e.g., fuzzy
𝑐-means [4],mixture ofGaussians algorithms [5]). Given a set
of initial observation data and a number 𝑘 of desired clusters,
the 𝑘-means algorithm computes a suboptimal placement
of 𝑘 cluster centroids and assigns the observations to such
centroids, alternating between an assignment phase, where
each observation point is assigned to its nearest centroid, and
refinement phase, where each centroid position is updated
as the center of mass of all observations belonging to that
centroid.

A well-known limitation of data clustering algorithms,
such as the 𝑘-means algorithm, is that the number of
clusters has to be specified beforehand, based for example,
on subjective evaluations or a priori analysis. Since this
assumption is typically not feasible in practice, a typical
solution consists of running several times the algorithm
with a different number of clusters and then deciding the
best obtained solution based on a posteriori evaluation [6].
Another issue of traditional algorithms is that there is no
guarantee that the clusters are sufficiently far from each
other. To this respect, distance-constrained data clustering
approaches have been devised in the literature: in [7, 8] the
considered constraints are the so-called must-links (i.e., an
observation 𝑖must belong to a cluster 𝑗) and cannot-link (i.e.,
an observation 𝑖 can not belong to a cluster 𝑗); in [9] the
feasibility of a constrained problem involving the so-called
𝛿-constraints (i.e., any two observations must have a distance
greater than 𝛿) and the 𝜀-constraints (i.e., for any observation
𝑖 in cluster 𝑗 there must be at least another observation ℎ in
cluster 𝑗 such that the distance between 𝑖 and 𝑗 is less than 𝜀)
is given. To the best of our knowledge, nowadays, there is no
methodology to specify a constraint on the distance between
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cluster centroids, while this class of constraints might help
finding a choice for the number 𝑘 when such value is a priori
unknown.

This problem has a particular relevance in a distributed
setting,where a network of sensors has to classify information
provided by several sensors without a central authority but
using only local data exchange among neighbors in the
network. Differently from community clustering in wireless
networks (e.g., see [10]), here the nodes are clustered depend-
ing on the data they sense, with no particular dependency on
the network topology.

In this paper, based on the preliminary results in [11],
a novel approach to solve the data clustering problem with
a distance constraint among cluster centroids is provided
that does not require the specification of the initial number
𝑘 of clusters and that is based on an extension of the
Hegselmann-Krause (HK) opinion dynamics model [12, 13],
which handles scalar data, in order to handle data inR𝑑. Such
a model, similar to consensus [14, 15], represents how a set
of agents interacts in order to reach a local agreement, but
the agents may split in several clusters depending on their
“opinions.”

Within the proposed approach, rather than striving for a
complete agreement among the agents, we exploit the pecu-
liarity of HK model to generate several clusters, with the aim
to map a large set of measurement data into few values (i.e,
the opinion clusters). In this view, as it will be discussed in the
following,HKmodels can be seen as a powerfulmethodology
to determine the number of clusters while respecting the
constraints on the distance among cluster centroids. The
HK model, in its original setting, is a centralized algorithm
[13]; hence we devise a distributed implementation based
on a combination of consensus algorithms, which are an
effective way to distribute complex operations, for example,
time synchronization [16].

The outline of the paper is as follows: after some pre-
liminaries, in Section 2, we provide a formulation of the
problem at hand and in Section 3 we analyze the formulation
of the standard data clustering problem and the 𝑘-means
algorithm; then in Section 4 theHK opinion dynamicsmodel
is reviewed, while in Section 5 the distributed consensus
algorithms are examined; Section 6 is devoted to outline the
proposed approach to solve the distance-constrained cluster-
ing problem, while Section 7 addresses the distributed imple-
mentation of the HK opinion dynamics model; Section 8
contains some numeric examples to show the potentialities
of this method, while Section 9 contains some conclusive
remarks.

Preliminaries. Let 𝐺 = {𝑉, 𝐸} be a graph with 𝑛 nodes V𝑖 ∈ 𝑉
and 𝑒𝑖 edges (V𝑖, V𝑗) ∈ 𝐸.

A graph is said to be undirected if (V𝑖, V𝑗) ∈ 𝐸 whenever
(V𝑗, V𝑖) ∈ 𝐸 and is said to be directed otherwise. Let the
neighborhood N𝑖 of a node 𝑖 be the set of nodes V𝑗 such
that (V𝑗, V𝑖) ∈ 𝐸, and let the degree 𝑑𝑖 = |N𝑖|. A graph 𝐺 is
connected if for any V𝑖, V𝑗 ∈ 𝑉 there is a path whose endpoints
are in V𝑖 and V𝑗.

2. Problem Statement

Consider a collection of 𝑛 sensors, each equipped with a 𝑑-
dimensionalmeasurement or piece of information 𝑥1, . . . , 𝑥𝑛,
with 𝑥𝑖 ∈ R𝑑. We want to select a number 𝑘 of groups or
clusters, 𝐶1, . . . , 𝐶𝑘, 𝑘 ≤ 𝑛. Every cluster 𝐶𝑗 is assigned to a
cluster centroid 𝑐𝑗 ∈ R𝑑, which represents the centroid of the
observations allocated to that cluster. A data point 𝑥𝑖 ∈ R𝑑 is
said to belong to cluster𝐶𝑗 if its distance from the centroid 𝑐ℎ,
with ℎ ̸= 𝑗, of every other cluster 𝐶ℎ is larger than its distance
from 𝑐𝑗. If 𝑥𝑖 belongs to 𝐶𝑗 we can set a binary assignment
variable 𝑟𝑖𝑗 ∈ B to 1 and to 0 otherwise. The solution of
a data clustering problem with distance constraints involves
the computation of the optimal choice of cluster centroids
𝑐𝑗, for 𝑗 = 1, . . . , 𝑘, that minimizes the distance of every
measurement data point 𝑥𝑖 from the cluster it belongs to.
More formally, we need to solve the following.

Problem 1 (distance-constrained data clustering). We want to
find the number of clusters 𝑘, the cluster centroids, 𝑐𝑗 ∈ R𝑑,
and measurement data assignments, 𝑟𝑖𝑗 ∈ R that minimize
the index
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(III) 𝑟𝑖𝑗 ∈ B ∀𝑖 = 1, . . . , 𝑛; ∀𝑗 = 1, . . . , 𝑘.

(2)

The first set of constraints (I) along with the third one
implies that each observation is assigned exactly to one
cluster; the constraints (II) imply that 𝜀 is a lower bound for
the distance between any pair of centroids; finally constraints
(III) imply that 𝑟𝑖𝑗 are binary decision variables.

This problem is novel, since in the literature, the set of
constraints (II) is typically not considered. Including such
constraints, however, is quite useful, since it may improve
the algorithm’s ability to detect homogeneous clusters. The
problem is very hard to solve exactly and traditional methods
as the 𝑘-means algorithm [17] may fail even at finding an
admissible solution, as it will be shown in the next section.

On the other side, the proposed algorithm uses an
algorithm based on theHegselmann-Krausemodel to choose
an admissible, although suboptimal, solution, and it has a
modest increase in computational complexity with respect
to the 𝑘-means algorithm, while allowing several advantages
(further discussed later in the paper):

(i) the algorithm provided in this paper always finds
an admissible, although suboptimal, solution to the
problem by means of the HK model, while the 𝑘-
means algorithm may fail;
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(ii) the proposed approach does not require the user to
define a priori the number of clusters, but it finds
automatically a suitable number of clusters based on
the parameter 𝜀;

(iii) outliers can be automatically isolated, without any a
priori data processing; this feature can be obtained
by dropping out the clusters whose cardinality is
significantly less than the others;

(iv) the solution provided in this paper is deterministic,
that is, for fixed 𝜀 and fixed observations, the result
is always the same, while the 𝑘-means algorithm
depends on the initial random choice of the centroids;

(v) while traditional approaches are very computation-
ally expensive when applied in a decentralized and
distributed setting [18] (i.e., for a sensors network),
thismethod can be distributedwith amodest increase
in computational complexity [19].

2.1. Distributed Setting. In this paper we want to provide a
solution to Problem 1, where a set of 𝑛 agents solves the above
problem in a distributed fashion, that is, by means of local
information exchange among the agents instead of resorting
to a centralized processing unit. Let 𝐺 = {𝑉, 𝐸} be a graph
involving all the agents and without any loss of generality;
suppose 𝐺 is connected, undirected, and fixed. Moreover, it
is assumed that each agent 𝑖 in the network

(1) has an associated observation 𝑥𝑖 ∈ R𝑑;

(2) knows 𝜀 ∈ [0, 1] which is the same for all agents;

(3) has a unique identifier;

(4) can exchange directly information only with neigh-
bors over 𝐺;

(5) can act synchronously.

In the next section we briefly review the traditional data
clustering problem and the 𝑘-means algorithm.

3. Data Clustering

Let us discuss the following problem.

Problem 2 (standard data clustering problem). Given 𝑘 ≤ 𝑛,
the data clustering problem consists in finding 𝑟𝑖𝑗 ∈ B, 𝑐𝑗 ∈
R𝑑, 𝑖, 𝑗 = 1, . . . , 𝑛, that minimize
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Problem (3) is hard to solve, and in the literature, several
iterative algorithms have been devised. Among the others, the
𝑘-means algorithm [17] proved its effectiveness.

Specifically, starting with a random set of 𝑘 centroids
𝑐1(0), . . . , 𝑐𝑘(0), the algorithm alternates for each step an
assignment and a refinement phase.

During the assignment phase, each observation 𝑥𝑖 is
assigned to the set characterized by the nearest centroid, that
is,

𝑟𝑖ℎ (𝑡) =
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Within the refinement phase each centroid 𝑐𝑗 is updated
as the centroid of the observations associated with the cluster
𝐶𝑗(𝑡), that is,

𝑐𝑗 (𝑡 + 1) =
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The two steps are iterated until convergence or up to a
maximum of𝑀 iterations.

Figure 1 reports a simulation run of the algorithm for a
set of 𝑛 = 12 observations in R2 and for 𝑘 = 3. Specifically
Figure 1(a) shows with circles the initial centroids, Figures
1(b) and 1(c) report the assignment and refinement phases for
the first step, while Figure 1(d) depicts the assignment phase
for the second step.

The 𝑘-means algorithm is granted to converge to a local
optimum value, while there is no guarantee to converge to the
global optimum [17, 20].

Since there is a strong dependency on the initial choice of
the centroids, a common practice is to execute the algorithm
several times and select the best solution. The algorithm,
moreover, is extremely sensitive to outliers, which can signif-
icantly alter the results; to cope with this issue, the outliers
have to be identified and excluded prior to the execution of
the algorithm.

Note that, for each step, each of the 𝑛 observations
and for each of the 𝑑 components of the observations, the
algorithm calculates the difference with each of the 𝑘 centers;
hence the computational complexity is 𝑂(𝑑 𝑘 𝑛 𝑀), where
𝑀 are the total number of iterations [20]. Notice that in
[18] a distributed implementation of the 𝑘-means algorithm
has been provided, with a computational complexity of
𝑂(𝑑 𝑘 𝑛

2
𝑀) for each agent.

Note further that, unfortunately, the 𝑘-means algorithm
is not able to solve Problem 1; hence we need to seek for other
solutions.

In the following we discuss an alternative method based
on the HK opinion dynamics model, which is granted to
provide an admissible solution to Problem 1. One of the
peculiar characteristics of this algorithm is that the number
of clusters 𝑘 has not to be imposed a priori but becomes an
output of the algorithm. The HK opinion dynamics model is
reviewed in the next section, while the proposed approach is
outlined in Section 6.
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(a) (b)

(c) (d)

Figure 1: Example of execution of 𝑘-means algorithm (source: Wikimedia Commons available under GNU Free Documentation License v.
1.2).

4. Hegselmann-Krause Opinion
Dynamics Model

In this section we recall the so-called HK opinion dynamics
model and revise some of the main theoretical results.
Consider a group of 𝑛 agents, each characterized by a discrete
time dynamic equation. The opinions, represented by the
state associated with each agent.

Specifically, each agent is provided with a scalar initial
opinion 𝑥𝑖(0) ∈ R, and the opinion of each agent varies
depending on the opinion of the others.

The key idea of the HK model is that agents with
completely different opinions do not influence each other,
while some sort of mediation occurs among agents whose
opinions are close enough.

Let 𝑥𝑖(𝑡) ∈ R be the opinion of 𝑖th agent at time step 𝑡
and let 𝑥(𝑡) = [𝑥1(𝑡), . . . , 𝑥𝑛(𝑡)]

𝑇 be the vector of the opinions
of all the agents. The 𝑖th agent is influenced by opinions that
differ from his own less than a given confidence level 𝜀 ≥ 0.

Hence the neighborhood of an agent for each time step 𝑡 can
be defined as

N𝑖 (𝑥𝑖 (𝑡)) = {𝑗 ∈ {1, . . . , 𝑛} :
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󵄨
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Note that, at each step 𝑡,N𝑖(𝑥𝑖(𝑡)) contains the 𝑖th agent itself.
Thismodels the fact that each agent takes into account also its
current opinion to form a new one.

The HK dynamic model is in the form

𝑥 (𝑡 + 1) = 𝐴 (𝑥 (𝑡) , 𝜀) 𝑥 (𝑡) , 𝑥 (0) = 𝑥0, (7)

where 𝐴(𝑥(𝑡), 𝜀) is the time-varying (actually state-
dependent) 𝑛 × 𝑛 adjacency matrix whose entries are in
the form

{𝐴(𝑥(𝑡), 𝜀)}𝑖𝑗 =

{

{

{

1

card (N𝑖 (𝑥𝑖 (𝑡)))
, if 𝑗 ∈ 𝑁𝑖 (𝑥𝑖 (𝑡)) ,

0, otherwise,
(8)
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where card(N𝑖(𝑥𝑖(𝑡))) is the cardinality of N𝑖(𝑥𝑖(𝑡)). Note
that 𝐴 is a stochastic matrix, and all its elements belong to
the interval [0, 1/𝑛].

Severalworks can be found in the literaturewhich attempt
to characterize the properties of the HK model. Given the
complexity of the above model, most of the studies consider
simple initial opinion profiles (i.e., the initial condition 𝑥(0)).
Two different classes are considered in the literature [13, 21]:

(i) the equidistant profile, where 𝑥𝑖(0) = (𝑖 − 1)/(𝑛 − 1)
hence 𝑥𝑖(0) ∈ [0, 1];

(ii) the random profile, where the opinions are uniformly
distributed within [0, 1].

In [13] it is conjectured that for every confidence level 𝜀
there must be a number of agents 𝑛 subject to the equidistant
profile for which a consensus is obtained (i.e., a single shared
opinion for all the agents), while in [21] it is conjectured
that, for any initial opinion profile, there exists a finite time
afterwhich the topology underlying thematrix𝐴(𝑥(𝑡), 𝜀) (i.e.,
the structure of the mutual influence among agents) remains
fixed. Recently this claim proved true, as in [22] it is proved
that the convergence time is 𝑂(𝑛2). In [23] it is proven that,
during the evolution of the system, the order of the opinions
is preserved, that is,

𝑥𝑖 (0) ≤ 𝑥𝑗 (0) 󳨐⇒ 𝑥𝑖 (𝑡) ≤ 𝑥𝑗 (𝑡) , ∀𝑡. (9)

Moreover it is proved that, if the initial opinion profile is
sorted, the evolutions of the smallest opinion 𝑥1(𝑡) and of the
largest opinion 𝑥𝑛(𝑡) are nondecreasing and nonincreasing,
respectively. Clearly, at any step 𝑡, if |𝑥𝑖(𝑡) − 𝑥𝑖+1(𝑡)| > 𝜀, this
remains true for any subsequent step, and the system splits
into two independent subsystems. In [23–25] the stability of
the dynamical model is investigated. In particular, the fact
that the system converges to a steady opinion profile in finite
time is proved in [23]. However, the fact that the system
might converge to a common opinion or split into clusters
is still under investigation. Besides, evaluating a lower bound
on the intercluster distance, some interesting conditions for
the study of the equilibrium stability are established. Figure 2
shows an example of result of the HK model with 𝑛 = 100
agents, equidistantly distributed within [0, 1], for different
values of the parameter 𝜀. It is noteworthy that the number
of clusters decreases when 𝜀 grows.

Let us discuss the following property that will be used to
solve the clustering problem with distance constraints.

Property 1. 𝜀 is a lower bound for the intercluster distance;
in fact, when a steady state is reached, any two clusters have
a distance which is necessarily greater than or equal to 𝜀,
otherwise they would have merged during the evolution of
the model.

The above property justifies the adoption of theHKmodel
to solve the data clustering problemwith distance constraints.

Regarding the computational complexity, at each step of
the algorithm the distance among the opinion of all agents
is calculated. Thus the computational complexity is 𝑂(𝑛2𝑀),
where𝑀 is the maximum number of iterations.

5. Consensus Algorithms

In order to provide a distributed implementation of the HK
model, let us discuss distributed consensus algorithms with
reference to connected, fixed, and undirected graphs.

Suppose each node in a graph 𝐺 represents an agent with
an initial condition 𝑥𝑖(0) ∈ R; at each iteration 𝑡 each node 𝑖
updates its state as

𝑥𝑖 (𝑡 + 1) = U𝑖 ({𝑥𝑗 (𝑡) : V𝑗 ∈N
𝑖𝑛

𝑖
∪ {𝑖}}) , (10)

whereU𝑖 is a function of the current state of the node V𝑖 and
his in-neighborhood.

Let 𝜒(𝑥1(0), . . . , 𝑥𝑛(0)) ∈ R be any function of the initial
conditions of all the nodes the 𝜒-consensus problem consists
of to find a functionU𝑖(⋅), such that

lim
𝑡→∞

𝑥𝑖 (𝑡) = 𝜒 (𝑥1 (0) , . . . , 𝑥𝑛 (0)) ∀𝑖 = 1, . . . , 𝑛. (11)

Let us now discuss the max-consensus problem, where
the nodes have to converge to the maximum of the initial
conditions; that is, 𝜒(⋅) is the maximum of its arguments.

5.1. Max-Consensus. Assuming the graph is connected and
undirected, the problem is known to have a solution in finite
time [15] (and specifically in no more than 𝑛 steps) choosing

U𝑖 (⋅) = max
ℎ∈N𝑖𝑛
𝑖
∪{𝑖}

𝑥ℎ (𝑡) . (12)

In the following we will denote by

𝑥𝑖 = max-consensus𝑖 (𝑥𝑖 (0) , 𝑥𝑗 (0) | 𝑗 ̸= 𝑖, 𝐺, 𝑡max) (13)

the execution of 𝑡max iterations of the max-consensus proce-
dure by the 𝑖th agent in a network 𝐺, starting from its own
initial condition 𝑥𝑖(0) and the “unknown” initial conditions
of the other agents, while 𝑥𝑖 is the state of the 𝑖th agent at
iteration 𝑡max. Such a formalism just represents the execution
of the max-consensus or min-consensus by the 𝑖th agent,
and we assume that all other agents are executing the same
algorithm in a synchronous manner, each with its own initial
condition.

5.2. Average-Consensus. In the average-consensus problem
the nodes are required to converge to the average of their
initial conditions, that is,

𝜒 (⋅) = 𝑐
𝑇
[𝑥1 (0) ⋅ ⋅ ⋅ 𝑥𝑛 (0)]

𝑇
, (14)

where 𝑐𝑇 = (1/𝑛)1𝑇
𝑛
and 1𝑛 is a vector with 𝑛 components all

equal to 1.
Let each node choose

U𝑖 (⋅) = 𝑤𝑖𝑖𝑥𝑖 (𝑡) +
𝑛

∑

𝑗=1

𝑤𝑖𝑗𝑥𝑗 (𝑡) , (15)
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Figure 2: Simulation of opinion dynamics for 𝑛 = 100 agents and for different values of 𝜀.

where𝑤𝑖𝑗 = 0 if (V𝑖, V𝑗) ∉ 𝐸.The update strategy for the entire
system can be represented as

𝑥 (𝑡 + 1) = 𝑊𝑥 (𝑡) , (16)

where the 𝑛 × 𝑛matrix𝑊 contains the terms 𝑤𝑖𝑗.
According to [26], this choice of U𝑖(⋅) yields an asymp-

totical solution if and only if (I)𝑊 has a simple eigenvalue at
1 and all other eigenvalues have magnitude strictly less than
1; (II) the left and right eigenvectors of𝑊 corresponding to
eigenvalue 1 are 1𝑛 and 𝑐

𝑇, respectively.
The above condition implies that, if the underlying graph

is undirected, it needs to be connected.

A possible choice for𝑊, assuming that each node knows
𝑛 (or an upper bound for 𝑛), is that each node 𝑖 chooses
independently the terms 𝑤𝑖𝑗 as

𝑤𝑖𝑗 =

{
{
{
{
{
{

{
{
{
{
{
{

{

1

𝑛

, if V𝑗 ∈N𝑖𝑛
𝑖
,

0, if V𝑗 ∉N𝑖𝑛
𝑖
,

1 − ∑

𝑙∈N𝑖𝑛
𝑙

𝑤𝑖𝑙, if 𝑖 = 𝑗,
(17)

resulting in a matrix𝑊 that satisfies the conditions in [26].
Several other choices that yield to asymptotic consensus are
possible (e.g., see [27]).
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As for the complexity, note that at each time step 𝑡
each agent 𝑖 calculates the contribution of each neighbor
to the next state; hence we have 𝑂(𝑑 𝑛 𝑡max). Notice that,
however, the algorithm in its basic setting has asymptotic
convergence, hence typically 𝑡max ≫ 1 in order to obtain a
good approximation of the asymptotic result. An alternative
is to resort to finite-time average-consensus algorithms like
the one in [28], but we choose to omit the discussion for the
sake of clarity.

In the following we will denote by

𝑥𝑖 = average-consensus
𝑖
(𝑥𝑖 (0) , 𝑥𝑗 (0) | 𝑗 ̸= 𝑖, 𝐺, 𝑡max) (18)

the execution of 𝑡max iterations of the average-consensus
procedure by the 𝑖th agent in a network 𝐺, starting from
its own initial condition 𝑥𝑖(0) and the “unknown” initial
conditions of the other agents, while 𝑥𝑖 is the state of the 𝑖th
agent at iteration 𝑡max. Again, such a formalism just represents
the execution of the max-consensus or min-consensus by the
𝑖th agent, and we assume that all other agents are executing
the same algorithm in a synchronous manner, each with its
own initial condition.

5.3. Network Size Calculation. Combining the max-consen-
sus and the average-consensus algorithms, it is possible
to calculate the number of agents 𝑛 in the network in a
distributed way [29].

Specifically, suppose a leader is elected viamax-consensus
over 𝐺 (e.g., the nodes, each, have a unique identifier and the
node with maximum identifier is elected as leader via max-
consensus). Now, let the nodes execute an average-consensus
algorithm with 𝑥𝑖(0) = 1 if node V𝑖 is the leader and 𝑥𝑖(0) = 0
otherwise: the average-consensus yields

lim
𝑡→∞

𝑥𝑖 (𝑡) =

1

𝑛

; (19)

hence 𝑛 can be calculated in a distributed way.

6. Data Clustering with Distance Constraints
via Opinion Dynamics and 𝑘-Means

In this section we propose an algorithm for data clustering
with measurement distance constraints, based on a general-
ization of the HK model.

Specifically, measurement data is processed by an HK-
like opinion dynamics “filter,” which eventually segments the
data into 𝜅 clusters. Moreover, based on the weight of each
cluster (namely, represented by the amount of measurement
data that has converged to that cluster), data outliers can be
filtered out from the original set. More precisely, we assume
that each agent 𝑖 is provided with an initial measurement
represented by a vector 𝑥𝑖 ∈ R𝑑. Every agent has an initial
state 𝑥𝑖(0) ∈ R𝑑, which is updated according to the following
set of iterative rules:

(

𝑥1,𝑖 (𝑡 + 1)

.

.

.

𝑥𝑛,𝑖 (𝑡 + 1)

) = 𝐴 (𝑥 (𝑡) , 𝜀)(

𝑥1,𝑖 (𝑡)

.

.

.

𝑥𝑛,𝑖 (𝑡)

) , (20)

for 𝑖 = 1, . . . , 𝑑, where the adjacency matrix 𝐴(𝑥(𝑡), 𝜀) is
computed based on the following definition of neighborhood:

𝑁
∗

𝑖
(𝑡) = {𝑗 ∈ {1, . . . , 𝑛} s.t. 󵄩󵄩󵄩󵄩

󵄩
𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜀} , (21)

where ‖ ⋅ ‖ is the Euclidean norm. Note that for 𝑑 = 1 the
standard HK model is obtained.

In [22] the HKmodel with vectorial opinions (i.e., 𝑑 ≥ 2)
is shown to converge in polynomial time.

In order to give an idea of the actual time required for
convergence,, we provide the simulation results of Figure 3,
where the average instant in which a steady state is reached
and the number of clusters obtained are reported in the case
𝑑 = 2 for several choices of 𝑛 = 50, 100, 200 agents and 𝜀 ∈
[0.1, 0.5]; for each choice of 𝑛, 𝜀, the average of 100 runs with
random initial opinions in [0, 1] is reported. Notice that all
the executions reached an exact agreement in finite time.

The proposed approach, as discussed before, does not
require the user to specify a value for the parameter 𝑘, but
it finds a suitable number of clusters based on the parameter
𝜀.

A high value of 𝜀 means very large and sparse clusters
(eventually also very few of them) while a small value of 𝜀
means very compact and small clusters (eventually, many of
them).

Note that, as said before, one of the biggest problems of
the 𝑘-means-like algorithms is that the outliers have to be
preprocessed and excluded; otherwise they would influence
considerably the quality of the clustering. In the proposed
approach, depending on the choice of 𝜀, very far observation
is not influenced by the others and is assigned to a singleton
(or more in general to a cluster composed of very few
elements).

Notice that it is always possible to execute a 𝑘-means
algorithm with 𝑘 equal to the number of clusters obtained
via HK, in order to attempt to refine the solution found, but
this can be done only if the solution of the 𝑘-means algorithm
does not violate the constraints on the distance among cluster
centroids.

The proposed algorithm, appears as a good candidate to
allow the clustering of a set of sensors ormobile robots, based
on perceived information such as position or other sensorial
information (temperature, humidity, etc.).

As for the computational complexity of the extension
of the HK model to opinions in R𝑑, it can be noted that
such complexity is the same as executing 𝑑 scalar HK
models; hence it is 𝑂(𝑑 𝑛2 𝑀); since the complexity of
the centralized 𝑘-means algorithm is 𝑂(𝑑 𝑘 𝑛 𝑀) [17], the
proposed approach determines an increase in computational
complexity with respect to the 𝑘-means algorithm of a factor
𝑛/𝑘 ≥ 1.

7. Distributed HK Opinion Dynamics

As shown in the previous section, the HK opinion dynamics
model can be used to provide an admissible, although sub-
optimal, solution to the distance-constrained data clustering
problem. However, since the topology underlying the HK
model is indeed a state-dependent topology, theoretically
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each agent may exchange information with another agent,
depending just on the difference in their opinions.

In order to adopt the HK model in a distributed per-
spective, we need to provide a different implementation, as
provided in Algorithm 1.

Since the agents have a unique identifier ℎ = 1, . . . , 𝑛, for
each time step and for each agent ℎ a distributed procedure
is executed by all agents in order to calculate 𝑥ℎ(𝑡 + 1).
Specifically, for a specific agent ℎ, each agent 𝑖 selects 𝛿𝑖

𝑘
=

𝑥ℎ(𝑡) if 𝑖 = 𝑗 and 𝛿
𝑖

𝑘
= 0 otherwise. Then the agents execute

a max-consensus procedure using 𝛿𝑖
𝑘
as initial condition; as

a result of such an operation, each agent 𝑖 knows 𝑥ℎ(𝑡) and
is able to determine wether ‖𝑥ℎ(𝑡) − 𝑥𝑖(𝑡)‖ ≤ 𝜀 or not. Such
knowledge is stored in a variable 𝑒𝑖

ℎ
for each agent, while a

variable 𝑧𝑖
ℎ
is equal to one if ‖𝑥ℎ(𝑡) − 𝑥𝑖(𝑡)‖ ≤ 𝜀 and zero

otherwise.
Using average-consensus, multiplied by 𝑛, in order to

obtain

𝑧ℎ =

𝑛

∑

ℎ=1

𝑧
𝑖

ℎ
,

𝑒ℎ =

𝑛

∑

ℎ=1

𝑒
𝑖

ℎ

(22)

the value 𝑥𝑖
ℎ
(𝑡 + 1) is obtained as

𝑥
𝑖

ℎ
(𝑡 + 1) =

𝑧ℎ

𝑒ℎ

. (23)

for 𝑡 = 1, . . . ,𝑀 do
for ℎ = 1, . . . , 𝑛 do

/∗Transmit the state of agent ℎ to each other∗/

𝛿
𝑖

ℎ
=

{

{

{

𝑥ℎ(𝑡) if 𝑖 = ℎ

0 else
;

𝛿ℎ = max-consensus𝑖(𝛿
𝑖

ℎ
, 𝛿
𝑗

ℎ
| 𝑗 ̸= 𝑖, 𝐺𝑐, 𝑛);

/∗Calculate 𝑥𝑖(𝑡 + 1)
∗/

𝑒
𝑖

ℎ
=

{

{

{

1 if ‖𝑥
𝑖
(𝑡) − 𝛿

ℎ
‖ ≤ 𝜀

0 else
;

𝑧
𝑖

ℎ
=

{

{

{

𝑥𝑖(𝑡) if ‖𝑥𝑖(𝑡) − 𝛿ℎ‖ ≤ 𝜀

0 else
𝑒ℎ = 𝑛 ⋅ average-consensus(𝑒

𝑖

ℎ
, 𝑒
𝑗

ℎ
| 𝑗 ̸= 𝑖, 𝐺, 𝑡max)

𝑧ℎ = 𝑛 ⋅ average-consensus(𝑧
𝑖

ℎ
, 𝑧
𝑗

ℎ
| 𝑗 ̸= 𝑖, 𝐺, 𝑡max)

𝑥
𝑖

ℎ
(𝑡 + 1) =

𝑧ℎ

𝑒ℎ

if 𝑖 == ℎ then
𝑥𝑖(𝑡 + 1) = 𝑥

𝑖

ℎ
(𝑡 + 1);

end if
end for

end for

Algorithm 1: Distributed HK opinion dynamics algorithm.

As for the computational complexity of the distributed
version, note that, for each step 𝑡 = 1, . . . ,𝑀 and for each
agent ℎ = 1, . . . , 𝑛, the agents execute a max-consensus
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(𝑂(𝑑 𝑛) steps) and two average-consensus algorithms
(𝑂(𝑑 𝑡max) steps), both with initial conditions in R𝑑, and
the complexity is 𝑂(𝑑 𝑛 𝑀 max{𝑡max, 𝑛}) where 𝑡max is the
number of iterations of the average- consensus algorithm.

Since, typically, 𝑡max > 𝑛, the distributed setting has 𝑡max/𝑛

times the complexity of the centralized algorithm. Moreover,
since the computational complexity of the distributed
𝑘-means algorithm is 𝑂(𝑑 𝑘 𝑛 𝑀) the proposed distributed
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algorithm has 𝑡max/(𝑘 𝑛) times the complexity of the
distributed 𝑘-means algorithm.

8. Numeric Examples

As discussed above, the 𝑘-means algorithm is generally
unable to solve the data clustering problem with distance
constraints. In this section, some examples are reported in
order to show the effectiveness of the proposed approach. A
comparative simulation between the HKmodel and 𝑘-means
algorithm is first addressed. Afterwards the potentiality of
the proposedmixed approach is showed; then the distributed
implementation is discussed.

Figure 4 shows an example inR2 with 𝜀 = 0.6 and 𝑛 = 200
observations. The application of the HK opinion dynamics
model yields 𝑘 = 63 clusters and 𝐷 ≈ 0.35. Unfortunately,
the 𝑘-means algorithm finds a solution for 𝑘 = 63 which,
although having 𝐷 ≈ 0.29, is not feasible for Problem 1
(violations of the constraints are shown with red lines).

Figure 5 shows a case where 𝑛 = 200, 𝜀 = 0.18 and the
HK opinion dynamics model gives 𝑘 = 5 clusters. Using the
𝑘-means algorithm for 𝑘 = 5 a better solution is obtained,
and the constraints are not violated; hence in this case
postprocessing the result of the HK model via 𝑘-means
algorithm yields a better result.

Figure 6 shows the ability of the proposed methodology
to isolate the outliers. For 𝑛 = 200 and 𝜀 = 0.1 theHKopinion
dynamicsmodel finds 𝑘 = 7 clusters, of which 2 are singletons
each containing an outlier. Executing a𝑘-means algorithm for
𝑘 = 7 gives worse results in terms of the objective function
with respect to the HK approach. If, conversely, the two
outliers are removed (𝑘 becomes equal to 5), then the 𝑘-
means algorithm has better results in terms of the objective
function.

Figure 7, eventually, shows an example of application of
the distributed HK model provided in Algorithm 1, in a case
where 𝑛 = 40 agents, each with a random position in [0, 1]2,
having to be clustered depending on their positions in a
way that the centroids are not closer than 𝜀 = 0.1. The
simulation was executed for 𝑀 = 15 iterations, and the
average-consensus algorithms were executed each 𝑡max = 100
steps. The topology of the network of agents is given in the
upper left plot, while the middle plots show the results of
the distributed HK model for the 𝑥 and 𝑦 coordinates. The
consensus steps performed by each agent during one iteration
of the distribute HK algorithm are reported in the upper
central plot, where “AVG” stands for average-consensus and
“MAX” stands for max-consensus, while the distribution of
max-consensus and average-consensus steps over the entire
execution of the algorithm is reported in the upper rightmost
plot. The lower plots, eventually, show the results of the
distributed HK model in terms of the clustering in [0, 1]2:
the agents are divided in 𝑘 = 20 groups, and the objective
function has a value 𝐷 ≈ 0.06. Notice that, in this case, the
𝑘-means algorithm with 𝑘 = 20 yields a worst solution both
in terms of the objective function 𝐷 ≈ 0.12 and in terms of
violation of the constraints (5 constraints are violated and are
highlighted with red thick segments).

9. Conclusions and Future Work

In this paper a distributed algorithm for a sensors network
to solve a data clustering problem is provided, with the
constraint that the centroids of the clusters must be within
𝜀.

The proposed approach is based on the HK opinion
dynamics model, which finds admissible, although subopti-
mal, solutions without requiring a user-specified number of
desired clusters and applies the 𝑘-means algorithm to find a
better solution.

In its original application, the HK opinion dynamics
model is a centralized algorithm. In this paper, a distributed
implementation is provided instead, based on a combination
of consensus algorithms.

Future work will focus on providing a bound for con-
vergence time in high-dimensional spaces and testing the
algorithm in a real world scenario, including noise and packet
loss.
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