
Automatica 49 (2013) 2339–2350
Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

On the robust synthesis of logical consensus algorithms for
distributed intrusion detection✩

Adriano Fagiolini a,b,1, Antonio Bicchi b,c
a DEIM, Faculty of Engineering, Università degli Studi di Palermo, Italy
b Interdepartmental Research Center ‘‘E. Piaggio’’, Faculty of Engineering, Università di Pisa, Italy
c Department of Advanced Robotics, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy

a r t i c l e i n f o

Article history:
Received 9 June 2011
Received in revised form
27 December 2012
Accepted 20 April 2013
Available online 14 June 2013

Keywords:
Consensus
Distributed algorithms
Intrusion detection
Security

a b s t r a c t

We introduce a novel consensus mechanism by which the agents of a network can reach an agreement
on the value of a shared logical vector function depending on binary input events. Based on results on the
convergence of finite-state iteration systems, we provide a technique to design logical consensus systems
that minimizing the number of messages to be exchanged and the number of steps before consensus
is reached, and tolerating a bounded number of failed or malicious agents. We provide sufficient joint
conditions on the input visibility and the communication topology for the method’s applicability. We
describe the application of our method to two distributed network intrusion detection problems.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Many control problems with distributed or networked systems
require that agents reach an agreement on certain information, by
merging their own uncertain and possibly incomplete estimates
through neighbor-to-neighbor interaction strategies. In the sim-
plest case, the information to agree about can be represented by
real numbers or vectors, and global agreement can be reached by
the use of linear iterative strategies (Olfati-Saber, Fax, & Murray,
2007). These strategies require that all agents repeatedly update
their own real states as weighted combinations of their own local
values and those of their neighbors. Examples of problems falling
into this linear framework are the rendezvous problem for a set of
mobile robots (Ren & Beard, 2008) and the clock synchronization
problem for a group of distributed processes (Schenato & Gamba,
2007). It has been recently established under what connectivity
conditions of the system’s communication topology global agree-
ment can be reached on, for example, the average of the agents’

✩ The material in this paper was partially presented at the 47th IEEE Conference
on Decision and Control, December 9–11, 2008, Cancun, Mexico. This paper was
recommended for publication in revised form by Associate Editor Hideaki Ishii
under the direction of Editor Ian R. Petersen.

E-mail addresses: fagiolini@unipa.it (A. Fagiolini), bicchi@centropiaggio.unipi.it
(A. Bicchi).
1 Tel.: +39 091 23863613; fax: +39 050 2217051.

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.04.033
initial values (see, e.g., Bertsekas & Tsitsiklis, 2003, Blondel, Hen-
drickx, Olshevsky, & Tsitsiklis, 2005, Fang, Antsaklis, & Tzimas,
2005, Olfati-Saber et al., 2007 and Ren, Beard, & Atkins, 2007).
Other problems, such as general function consensus (Cortés, 2008)
and optimal sensing coveragewith a teamofmobile robots (Cortés,
Martinez, Karatas, & Bullo, 2004), still involve agreement on real
information, but they need nonlinear ad hoc iterative strategies.
In Cortés et al. (2004), a team of robots can adjust their locations
moving toward the centroid of the corresponding Voronoi regions.
In other application domains, agents have to consent on informa-
tion represented by (possibly) infinite set-valued data and need to
use aggregation strategies operating on such data. A nonlinear iter-
ative strategy is described in Di Marco, Garulli, Giannitrapani, and
Vicino (2003) which enables a team of robots to simultaneously
self-localize and build a map of the surrounding environment, by
merging continuous sets that represent locally estimated uncer-
tain positions of detected features.Misbehavior detection inmulti-
robot systems with event-based coexistence rules is solved via a
consensus strategy bywhich robots can reconstruct the occupancy
map of other robots’ neighborhoods (Bicchi, Fagiolini, & Pallottino,
2010).

Moreover, when dealing with distributed and open systems,
one has necessarily to deal with the event that some agents
may exhibit unexpected behavior, due to spontaneous failure
or even malicious programming. Robust clock synchronization
in systems where processes can exchange locally estimated
confidence intervals of the clock has been shown to be solvable

http://dx.doi.org/10.1016/j.automatica.2013.04.033
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.automatica.2013.04.033&domain=pdf
mailto:fagiolini@unipa.it
mailto:bicchi@centropiaggio.unipi.it
http://dx.doi.org/10.1016/j.automatica.2013.04.033


2340 A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350
via a nonlinear iterative strategy that is resilient to possible
measurement inconsistency (Marzullo, 1985). More generally,
failure management has been studied in distributed computing,
under the framework of so-called Byzantine Generals problem
(see, e.g., Lamport, Shostak, & Pease, 1982 and Lynch, 1996), which
addresses how to ensure that all agents of a network reach a
consensus also in the event that a bounded number of them
experiences failures. In this framework, communication between
neighboring agents is allowed via the exchange of ‘‘oral’’ messages,
i.e., there exist wired/dedicated connections between any two
communicating agents, which enables malicious agents to send
different, possibly conflicting, values to different neighbors. It
has been established that, to tolerate up to γ malicious agents
(possibly conspiring together), there are two necessary conditions
on the minimum number n of agents, i.e., n ≥ 3γ , and on the
connectivity c of the communication topology (c ≥ 2γ + 1).
More recently, the problem of uncooperative agents has received
increasing attention in the control community (Bicchi et al.,
2010; Pasqualetti, Bicchi, & Bullo, 2012; Sundaram & Hadjicostis,
2011), most likely due to the strong push given by the foreseen
actual implementability of multi-robot systems in the near future.
Here, a broadcast communication model can be adopted, since
communication iswireless, which implies that agents are only able
to transmit identical values to all their neighbors. In this context,
the requirement on the number of agents is no longer needed, but
the connectivity one is still in place (Bhandari & Vaidya, 2005).

In the present work, we focus on control problems in which a
team of agents must cooperatively compute a logical vector func-
tion that returns a set of decisions depending on a set of input
events. Agents have partial accessibility to the input events, very
simple local computation and broadcast communication capabili-
ties, andmay be affected by failures. This problem involves reliable
network information diffusion that can be achieved by the use of
techniques based on Robust Flooding (RF) or Exponential Informa-
tion Gathering (EIG) (Lynch, 1996). RF is a protocol requiring that
every agent forward all incoming messages to its outgoing links,
except the ones from which it has received the messages. In its
basic formulation, RF introduces a high communication overhead,
due to redundant relay of multiple copies of each message (Perl-
man, 1989). Protocol variations such as the initialization of every
messagewith a lifetime counter, which is decreased every time that
the message is relayed, and the subsequent discarding of the mes-
sages that are out of their life span, can reduce the number of mes-
sages circulating in the network only heuristically. In a network
with moderate connectivity, if every agent has k neighbors, and
a counter strategy with a limit of h hops is used, then every data
packet will spawn on the order of kh copies (Perlman, 1989). More-
over, since communication links have finite capacity, messages are
dropped when their buffers become full. To prevent all messages
for the conversation between a given couple of agents being sys-
tematically dropped, strategies enforcing fair link utilization by the
agents must be implemented, which requires computationally ex-
pensive authentication mechanisms (typically based on public key
cryptography), assuring that a message generated by an agent oc-
cupies its reserved memory buffer slot (Perlman, 1989). Further-
more, the alternative of EIG algorithms requires that all agents
send their initial estimates and relay the ones that they receive for
γ + 1 rounds, while recording all such values in a labeled tree that
memorizes them by the communication path by which they have
been received. While EIG algorithms are able to solve the agree-
ment problem under the worst failure conditions (occurring when
agents may exhibit any arbitrary behaviors and can communicate
via ‘‘oral’’ messages), they are known to be costly for the amount of
local storage used, and for the dimension of the messages that are
exchanged (Lynch, 1996). The labeled tree has indeed γ + 2 levels,
and each node at level k, 0 ≤ k ≤ γ , has exactly n−k children. EIG
algorithms also become unnecessarily redundant with broadcast
communication.

To overcome the limitations of existing methods from the
distributed algorithm literature, we propose a technique which
adopts a dynamic system approach. Our method allows the design
of logical interaction strategies by using which agents can reach
an agreement on the value of the shared logical vector function,
via the exchange of binary values of their local estimates of
the input events. The technique builds upon known results on
the convergence of finite-state iteration systems (Robert, 1980)
and previous work by the authors (Fagiolini, Visibelli, & Bicchi,
2008), and it is valid for networks with fixed topologies. Our
method requires centralized knowledge of the communication
topology during an initial design phase, whose aim is to find secure
minimum-length paths connecting every input event with every
agent, so that the input’s information can robustly flow over the
network with the minimum number of steps and messages. After
such a phase, every agent needs only to know what its neighbors
are and how to combine their states. This is to be compared
with the linear iterative strategies surveyed in Bullo, Cortés, and
Martínez (2009) and Olfati-Saber et al. (2007), where a centralized
design phase is not needed, and it is only required to check that all
possible communication graphs are doubly stochastic. Moreover,
by formalizing our interaction strategy as a logical dynamic system,
the dimension of every agent’s state is also minimized, since only
the result of the computation performed during the latest one-hop
interaction needs to be maintained.

The paper is organized as follows. The logical consensus prob-
lem is formalized in Section 2. Results on the convergence of binary
dynamic systems are recalled in Section 3. The problem of reaching
consensus on a single input with and without faulty agents is set-
tled in Sections 4 and 5. The design of logical consensus systems for
robust computation of generic logical vector functions with fixed
topology networks is described in Section 6. Application to twodis-
tributed intrusion detection problems is shown in Section 7.

2. Problem statement

We consider distributed control problems in which p decisions
depending on the occurrence of m events must be shared by a
group of n agents, A1, . . . , An. Events are conditions, such as the
discovery of an intruder in a specific region or the failure of a
component in a computation system, that can occur at different
geographical locations. Decisions are group-level actions that have
to be performed in response to such events. A set of m binary
input variables u1, . . . , um is associated with the events, and a
set of p binary output variables, y1, . . . , yp, is associated with the
decisions. An input–output relation of the type

y1 = f1(u1, . . . , um),
...
yp = fp(u1, . . . , um),

(1)

where each fi : Bm
→ B is a logical function, expresses the

connection between the two sets of variables. We will refer to
Eq. (1) as the logical decision system and rewrite it more concisely
as y = f (u), where u = (u1, . . . , um)T ∈ Bm and y = (y1,
. . . , yp)T ∈ Bp are the input and output vectors, respectively, and
f = (f1, . . . , fp)T , with f : Bm

→ Bp, is a logical vector function.
Agents are placed at different geographical locations and

may have heterogeneous sensors, which implies that each input
component uj may be measurable only by a subset of them. This
property can modeled by introducing a visibility matrix V ∈ Bn×m,
being a binary matrix s.t. V (i, j) = 1 if, and only if, the ith agent
Ai can read the input component uj. Moreover, agents are able
to exchange messages with each other, but may not be able to



A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350 2341
communicate with all the members of the group, which can be
described by a communication matrix C ∈ Bn×n, where C(i, k) = 1
if, and only if, agent Ai can receive a message from agent Ak. The
matrix C is instrumental in defining the notion of communication
neighbors, or in short C-neighbors, of an agent Ai, being identified
by the non-null elements of C ’s ith row.

The evaluation of f requires in general full knowledge of the
input vector u. A possible solution can be obtained where a single
centralized decision process Pc receives all measures of the input
vector components uj, computes the output vector y, and sends
it back to all agents. This naive approach is unsatisfactory for at
least three reasons. First of all, it is non-scalable, since the amount
of data to be exchanged through the network and processed by Pc
increases with the number of agents, rather than only with the
dimensions m and p of the decision task; second, the approach
requires explicitmessage routing management to ensure that every
agent reaches and is reached by Pc ; third, it represents a system
with a single point of failure represented by Pc andmay be unable to
cope with communication failures, unless countermeasures based
on message relay, for example, are introduced.

We pursue a different approach in which agents are aware of
the logical functions f1, . . . , fp, and must cooperatively estimate
the output of the logical decision system y = f (u). Each agent
Ai has a binary vector state Xi = (Xi,1, . . . , Xi,q) ∈ B1×q, where
q is a proper dimension, and an output decision vector Yi =

(yi,1, . . . , yi,p) ∈ B1×p. Let X = (XT
1 , . . . , XT

n )T ∈ Bn×q be the state
of the agents’ network. The agent’s state is updated according to
an iterative rule of the form Xi(t + 1) = Fi(X(t), u(t)), where t
is a discrete time, and the agent’s output is computed via a binary
output function Yi(t) = Gi(Xi(t), u(t)). The maps Fi : Bq

× Bm
→

Bq and Gi : Bq
× Bm

→ Bp are required to comply with the
agent’s local visibility and communication abilities; i.e., they can
only depend on Ai’s state, the state of its C-neighbors, and on the
input components uj that it can read. Let Y = (Y T

1 , . . . , Y T
p )T ∈

Bp×q be the agents’ network output. The evolution of the network
of all the agents is thus described by the logical iterative system
X(t + 1) = F(X(t), u(t)),
Y (t) = G(X(t), u(t)), (2)

where F = (F T
1 , . . . , F T

n )T andG = (GT
1, . . . ,G

T
n)

T . Hence,we recast
the problem of computing the decision system in Eq. (1) as that of
allowing a network of agents to consent on the output of a logical
vector function, which we will refer to as the problem of reaching
Logical Consensus (LC).

In this context, we want to solve the following problem, which
is dealt with in Section 4.

Problem 1 (LC in Virtuous Scenarios). Given the logical decision
system of Eq. (1), and communication and visibility matrices C
and V , design a logical consensus system as in Eq. (2) that is
compliant with C and V and ensures logical consensus, from all
initial states X(0) and inputs u, on the centralized decision system
y∗

= f (u), i.e.,

Y (t) = 1n (y∗)T , for some t > t ′,

where 1n is an n × 1 binary vector with all entries equal to 1.

We also want to solve the same consensus problem within a
scenariowith possible faults or security attacks,which is dealtwith
in Section 5.

Problem 2 (LC in Malicious Scenarios). Assuming that at most γ
agents may share incorrect/corrupted data, design a robust logical
consensus system ensuring that all correct agents Ai consent on
the correct decision, i.e.,

Yi(t) = (y∗)T , for some t > t ′.
Finally, we assume that the input vector u is piece-wise
constant, indicating that it may be constant or slowly changing
with respect to the convergence speed of the system in Eq. (2).

3. Convergence of logical dynamic systems

Consider the simplest Boolean algebra described by the
sextuple (B, +, ·, ¬, 0, 1), whereB = {0, 1} is a domain set,+ and
· are binary operations representing the logical sum and product,
respectively, ¬ is a unary operation representing the logical
complement, and 0 (null) and 1 (unity) are the domain’s smallest
and biggest values, respectively. Consider the partial order relation
≤ described by the following axioms: 0 ≤ 0, 0 ≤ 1, 1 ≤ 1.
An element λ ∈ B is referred to as a scalar. Given an integer
number n, a Boolean vector v and a Boolean matrix A are elements
belonging to the sets Bn and Bn×n, respectively. Given two vectors
v = (v1, . . . , vn) and w = (w1, . . . , wn), and two square matrices
A = {ai,j} and B = {bi,j}, we define the scalar product as

wTv
def
=

n
i=1

vi · wi ∈ B,

the product Av as the vector whose ith element is the scalar
product between the ith row of A and the vector v, and the product
AB as the matrix whose (i, j)th element is the scalar product
between the ith row of A and the jth column of B. In other words,
products between amatrix and a vector and between twomatrices
are computed in the usual way, by only replacing the sum and
product on reals with those of the Boolean algebra.

Consider an autonomous logical system of the form
x(t + 1) = F(x(t)),
x(0) = x0, (3)

where x0 is an initial state and F : Bn
→ Bn is an endomorphism

on Bn involving only operations of the binary algebra. It is worth
noting that, as Bn is a finite domain set, the evolution of a generic
logical system can either converge in finite time to an equilibrium
point or be captured by a cycle. The convergence of these systems
is studied in Robert (1980), from which we recall Definitions 1–4
below, and the results described in the remainder of this section.

First, we need to introduce a metric on Bn:

∆ : Bn
× Bn

→ Bn

(x, y) → (x1 ⊕ y1, . . . , xn ⊕ yn),

where ⊕ is the exclusive disjunction

⊕ : B × B → B
(xi, yi) → (¬xi yi) + (xi¬yi).

This metric, called the binary vector distance, is indeed a distance
on Bn, since it satisfies the following axioms: ∆(x, y) =

∆(y, x), ∆(x, y) = 0 iff x = y, ∆(x, y) ≤ ∆(x, z) + ∆(z, y), for
all x, y, z ∈ Bn.

Definition 1 (Boolean Eigenvalues/Eigenvectors). A scalar λ ∈ B is
an eigenvalue of a Boolean matrix A ∈ Bn×n if there exists a vector
x ∈ Bn, called the eigenvector, s.t.

A x = λ x.

Definition 2 (Boolean Spectral Radius). The spectral radius of a
Booleanmatrix A ∈ Bn×n, denoted byρ(A), is its biggest eigenvalue
in the sense of the order relation ≤.

Proposition 1. Every Boolean matrix A ∈ Bn×n has at least one
eigenvalue. Hence ρ(A) always exists.



2342 A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350
Proposition 2. A Boolean matrix A ∈ Bn×n has Boolean spectral
radius ρ(A) = 0 if, and only if, one of the two following equivalent
conditions holds.

• PTA P is a strictly lower or upper triangular matrix for some
permutation matrix P.

• An
= 0 (the nth Boolean matrix power of A).

Remark 1 (Spectral Radius Computation). The above propositions
provide a procedure for the computation of ρ(A). Indeed, by
Proposition 1, we have ρ(A) ≥ 0. Hence, one has first to check if
A admits only the eigenvalue λ = 0, which can be done, based on
Proposition 2, either by showing a permutation matrix P (namely,
a reordering of A’s rows and columns) that brings A into strictly
lower or upper triangular form, or by checking if An equals the null
matrix. If unsuccessful, one can conclude that ρ(A) = 1, implying
that the scalar λ = 1 is an eigenvalue of A, while nothing can be
said for the scalar λ = 0.

Definition 3 (Contractive Map). A map F : Bn
→ Bn is said to

be contractive w.r.t. the binary vector distance ∆ if there exists a
matrix M ∈ Bn×n s.t.

• ρ(M) < 1 (which implies ρ(M) = 0), and
• ∆(F(x), F(y)) ≤ M ∆(x, y), for all vectors x, y ∈ Bn.

Definition 4 (Incidence Matrix). The incidence matrix of a logical
map F is a Boolean matrix B(F(x)) = {bi,j}, where bi,j = 1 if, and
only if, the ith component of F(x) depends on the jth component of
the input vector x, i.e.,

∃ x̄ ∈ Bn s.t. F(x̄) ≠ F(x̄ ⊕ ej),

where ej is the jth basis vector of Bn.

Theorem 1. A map F : Bn
→ Bn is contractive if, and only if, the

following equivalent conditions hold.

• ρ(B(F(x))) = 0.
• PTB(F(x)) P is strictly lower or upper triangular, for some

permutation matrix P.
• B(F(x))q = 0, with 0 ≤ q ≤ n.
• ∃ q ≤ n s.t. F q (F ’s composition with itself q times) is a constant

map, i.e., it is independent of x(0). �

Corollary 1. A contractive map F globally converges to a unique
equilibrium.

Finally, we can provide the following definition.

Definition 5. A logical map F : Bn
× Bm

→ Bn is (C, V )-compliant
if, and only if, its incidence matrix B(F(X, u)) satisfies the logical
vector inequality

B(F(X, u)) ≤ (C V ) .

4. Linear logical consensus systems

First of all, we need to determine if a given combination of input
visibility and agent communication topology allows the jth input
uj to be propagated to the entire network, or in other words which
part of the graph is reachable from uj. The binary vector Vj contains
1 for all entries representing agents that can ‘‘see’’ or measure the
input uj, and thus that are reached from the input in one step. Note
also that all binary vectors CkVj, for k = 0, 1, . . . , contain 1 for
all entries representing agents that can receive the values of input
uj through a sequence of k messages, and thus that are reached
from the input after exactly k+1 steps. More precisely, if we add a
fictitious node representing uj to the communication graph, the ith
element of CkVj is 1 if, and only if, there exists at least one path of
length k+ 1 from the fictitious node to the one representing agent
Ai. By the definition of the graph diameter diam(G), all agents
that are reachable from an initial set of agents are indeed reached
in at most diam(G) steps. It also holds that diam(G) ≤ n − 1.
Let us denote by κ(C, Vj) the visibility diameter of the pair (C, Vj)

being the number of steps after which the sequence {CkVj} does
not reach new nodes/agents. Given a pair (C, Vj), we can introduce
the reachability matrix Rj, assigned with input uj,

Rj =

Vj CVj C2Vj · · · Cn−1Vj


,

whose columns ‘‘span’’ a subgraph GR(NR, ER) of G(N, E), where
NR is the node set representing agents that are reachable from uj,
ER is an unspecified edge set that will be considered during the
design phase, N = {1, . . . , n}, and E = {(i, j) | C(i, j) = 1} is the
edge set of available links. Consider the jth span vector obtained as
the logical sum of Rj’s columns:

I(n)j =

n−1
k=0

CkVj =

n−1
k=0

Rj(:, k),

whose ith element equals unity if, and only if, there exists a path
of any length from the fictitious node representing uj to the node
representing Ai. Given a pair (C, Vj), we define the span of the
reachability matrix Rj(C, Vj) as the reachable set NR = {i |

I(n)j (i) = 1}. The unreachable set is obtained by complementation:
NR̄ = N \ NR .

Definition 6. A pair (C, Vj) is (completely) reachable if, and only
if, the span of Rj(C, Vj) is the entire graph (i.e., NR = N), or,
equivalently, if

I(n)j = 1n.

Example 4.1. Consider for example a network with n = 5 agents
characterized by the following communication matrices and jth
visibility vector:

C =


1 1 0 0 1
1 0 1 0 1
1 1 1 1 1
0 1 1 1 1
0 0 0 0 1

 , Vj =


1
0
0
0
0

 .

First note that, in this example, only agentA1 is able tomeasure
uj. The reachability matrix associated with the jth input is

Rj = (Vj CVj · · · C4Vj) =


1 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 0 0

 .

The span vector is I(n)j = (1, 1, 1, 1, 0)T , and thus the reachable
subgraph is NR = {1, 2, 3, 4}, whereas the unreachable one is
NR̄ = {5}. The visibility diameter, being thenumber of stepswithin
which all the agents in NR are reached, is κ(C, Vj) = 3. �

Consider now how to design a consensus map F : Bn
×B → Bn

that is (C, Vj)-compliant and that allows the information on uj to
be propagated throughout the network. It should be evident that
the design can only concern the reachable subgraph GR(NR, ER),
while nothing can be done for the unreachable one. Note that
the presence of a non-empty unreachable subgraph GR̄ in our
context where node consensus is sought indicates that the design
problem is not well posed. This would require further actions, such
as the introduction of new nodes, and a better deployment of the



A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350 2343
existing ones as well as an enhancement of their visibility and
communication capabilities, but this goes beyond the scope of the
work, and will not be considered.

An intuitive yet optimal way to propagate the input uj is
obtained if all agents that can directly measure the input send
their local estimates to their C-neighbors without overlapping,
which in turn will send them to other C-neighbors that have not
received them yet, and so on and so forth. If we select from graph G
only the edges representing links through which one message has
been sent according to this strategy, we obtain a so-called Input
Propagation Spanning Tree (IPST), which is rooted at the fictitious
node representing uj and which reaches every agent in NR . It also
encodes an optimal message exchange scheme by following which
all reachable agents can be informed about the value of uj with
minimum number of messages and steps. To find such an IPST
is instrumental in solving our problem, and it can be based on
the vector sequence {CkVj}.2 Indeed, note that CkVj = C(Ck−1Vj),
which tells us that in the optimal propagation scheme the agents
that are reachable after k steps must have received a message
containing the estimate of uj from one of the agents that were
reachable after k−1 steps. Any consecutive sequence of agents that
are extracted from non-null elements of the sequence is (C, Vj)-
compliant by construction.

Therefore, an IPST of input uj can be found by considering the
sequence of vectors indicating, for all steps k, which agents are
reached for the first time:

Lkj =


Vj if k = 1,

Ck−1Vj ¬


k−2
h=0

ChVj


if k > 1.

Let k̄ be the first step at which no new agents are reached, i.e.,
L(k̄)
j = 0. It trivially holds that

κ(C, Vj) = min
k

{k | Lkj = 0} = k̄ − 1.

At the generic step k of the design phase, it is possible to choose
the update rule Fi : Bn

× B → B of every agent Ai s.t. Lkj (i) = 1. In
particular, we have
xi(t + 1) = C∗

i,: x(t) + Vj(i) uj,

with

C∗

i,: =


0 if k = 1,
eThi if k > 1,

where ehi is the hith vector of the canonical basis, and

hi = min
h

{Ci,h Lk−1
j (h) = 1}.

Note also that C∗
= S C ≤ C , where S is a suitable selectionmatrix.

The design phase ends at step k̄.
Moreover, let P be a permutation matrix that reorders the

agents by the order in which their update functions Fi are defined
during the design phase. Also, let C̃∗

= PTC∗P and Ṽj = PTVj
be the corresponding communication matrix and visibility vector,
respectively. It should be evident that, in the reordered coordi-
nates, we have

C̃∗
=


0 0 · · · 0 0

C̃0,1 0 · · · 0 0
...

...
...

0 · · · C̃κ−1,κ 0 0
0 · · · 0 0 0

 , (4)

2 As described below, the computation of an IPST involves only logical operations
on binary vectors and, hence, is very efficient from both memory and computation
viewpoints.
which has a strictly lower-block triangular form, and Ṽ ∗

j = PT Vj =

(1, . . . , 1, 0, . . . , 0)T . In the new coordinates, the reachability
property of the system should be more apparent. Indeed the
reachability matrix Rj(C̃∗, Ṽj) is

1T 0 0 · · · 0 0 0
0 C̃0,1 0 · · · 0 0 0
0 0 C̃2,3C̃1,3 · · · 0 0 0
...

...
...

0 0 0 · · · 0 C̃κ−1,κ · · · C̃1,κ 0
0 0 0 · · · 0 0 0

 ,

where the upper-left matrix block (related to the reachable
subgraph) contains exactly one element that equals 1 in all rows,
and the two lower matrix blocks (related to the unreachable
subgraph) are 0. Finally, observe that all products C̃i+1,jC̃i,j are well
defined since the column number of C̃i+1,j equals the row number
of C̃i,j by construction.

Example 4.2 (Cont’d). Consider the design phase of the network of
Example 4.1. For k = 1, we have L1j = (1, 0, 0, 0, 0)T , and thus the
update function of agent A1 is chosen with C∗

1,h = 0. For k = 2,
we have L2j = (0, 1, 1, 0, 0)T , and thus the update functions of
agents A2 and A3 are chosen with C∗

2,h = C∗

3,h = (1, 0, 0, 0, 0). For
k = 3, we have L3j = (0, 0, 0, 1, 0)T , and thus the update function
of agent A4 is chosen with C∗

4,h = (0, 1, 0, 0, 0). For k = 4, we
have L4j = 0, and thus κ(C, Vj) = 3. C∗

5,h is undetermined, since
agent A5 is unreachable and can be set to null. The corresponding
communication matrix is

C∗
= PT (CS)P =


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 ,

where P is the identity matrix and S is a suitable selection matrix.
The corresponding consensus system, restricted to the reachable
agents, is
x1(t + 1) = uj(t),
x2(t + 1) = x1(t),
x3(t + 1) = x1(t),
x4(t + 1) = x2(t),

which indeed can optimally propagate the input uj. �

We can now discuss the correctness of the above-described
linear consensus system. The following theorem is a solution to
Problem 1.

Theorem 2 (Linear Logical Consensus). Given a reachable pair
(C, Vj), where C is a communicationmatrix and Vj is a visibility vector,
the linear logical consensus system
x(t + 1) = C∗ x(t) + Vj uj(t),
x(0) = x0,

where x0 is an initial state and the pair (C∗, Vj) is an IPST of input uj,
is (C, Vj)-compliant and, for all piecewise constant inputs uj(t) = ūj,
globally converges in at most κ(C, Vj) steps to the equilibrium

x̄ = 1nūj.

Proof. The consensus state x̄ = 1nūj is an equilibrium and is
globally stable. Indeed, the update rule gives

x(t + 1) = C∗1n ūj + Vj ūj = Ṽj ūj = 1nūj,



2344 A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350
since Ṽj = C∗ 1n + Vj = 1n. Moreover, the incidence matrix of the
system is

B(F(x)) = C∗,

which is similar to the strictly lower triangular matrix in
Eq. (4). Then, the global stability of the equilibrium follows from
Theorem 1.

To prove the convergence time, consider the system in coordi-
nates sorted by the order in which their update functions are cho-
sen during the design phase. Since C̃∗ is a block lower triangular
matrix, the system can be solved block-wise via Gauss’ method.
Indeed, we have

z0(t + 1) = u(t),
z1(t + 1) = C̃0,1 z0(t),
...

zl(t + 1) = C̃l−1,l zl−1(t),
...

zκ(t + 1) = C̃κ−1,κ zκ−1(t),

where zi is the ith block of reordered components. The system’s
evolution with constant input ūj is thus z0(1) = ūj, z1(2) =

C̃0,1 z0(1) = ūj, . . . , zκ(κ) = C̃κ−1,κ zκ−1(κ − 1) = ūj, which
proves that the consensus is reached after κ steps. �

Example 4.3. Consider a network of n = 5 agents with the
following pair of communication and visibility matrices (note that
two agents are able to measure the input):

C =


1 1 0 0 1
1 0 1 0 1
0 1 1 1 1
0 1 1 1 1
1 0 1 0 1

 , Vj =


1
1
0
0
0

 . (5)

Consider applying the design procedure above and reordering
the agents into two disjoint groups based on the agent that
can measure the input. An IPST in the reordered coordinates is
characterized by the matrices

C̃∗
=


0 0 0
1 0 0
1 0 0

0 0
0 0
0 0

0 0 0
0 0 0

0 0
1 0

 , Ṽ ∗

j =


1
0
0
1
0

 .

The corresponding linear logical consensus system is
x1(t + 1) = uj(t),
x2(t + 1) = uj(t),
x3(t + 1) = x2(t),
x4(t + 1) = x2(t),
x5(t + 1) = x1(t),

and the visibility diameter κ(C, Vj) = 2.
Consider the evolution of the system from the initial state

x0 = (x01, x
0
2, x

0
3, x

0
4, x

0
5)

T and input uj(t) = ūj for t ≥ 0. Direct
computation gives x(1) = (ūj, ūj, x02, x

0
2, x

0
1)

T and x(t) = x(2) =

(ūj, ūj, ūj, ūj, ūj)
T for t ≥ 2. �

5. Dealing with agent failure

Consider the case when some agents may incorrectly update
their binary states, because of internal failures due to spontaneous
malfunctioning or malicious intervention. In this work, we assume
that a faulty agent may either update its state xi with the
complement of the correct value Fi(x, uj), or be stuck at the
Table 1
Possible operating modes of the generic ith agent.

Operating condition di

Correct agent 0
Inverted agent 1
Stuck on 0 Fi(x, uj)

Stuck on 1 ¬Fi(x, uj)

constant values 0 or 1. As a consequence, the behavior of a generic
agent Ai can be described by an equation of the type

xi(t + 1) = Fi(x(t), uj(t)) ⊕ di, (6)

where Fi : Bn
× B → B is the nominal update function and

di ∈ B is a binary disturbance that can take on the forms listed in
Table 1. We say that an agent Ai is correct if it applies the nominal
update function Fi to determine its state xi (i.e., di = 0), and faulty
otherwise.

The presence of a faulty agent may in general prevent the
establishment of the correct consensus within a network of agents
exploiting the linear logical update rule, Fi = C∗(i, :) x+Vj(i) uj, as
shown in the following example.

Example 5.1 (Linear Consensus Failure). Consider a network com-
posed of n = 5 agents that need to consent on the input uj through
direct visibility and message exchange. Suppose that the network
is characterized by the communication and visibility matrices

C =


1 0 1 0 0
0 1 1 1 0
1 1 1 1 0
0 0 0 0 0
1 1 1 0 1

 , Vj =


1
1
0
1
0

 .

The corresponding linear logical consensus system is
x1(t + 1) = uj,
x2(t + 1) = uj,
x3(t + 1) = x1(t),
x4(t + 1) = uj,
x5(t + 1) = x1(t).

If, for example, agent A1 is faulty (d1 ≠ 0), the equilibrium
point that is reached by the system is

x̄ = (uj ⊕ d1, uj, uj ⊕ d1, uj, uj ⊕ d1)T ≠ 1nuj,

which shows that the network is inconsistent and has not reached
the desired consensus. �

Our problem is equivalent to making a binary vote based on
a number of independent evaluations, some of which may be
compromised or faulty. It is well known that, to tolerate up to
γ faults, it is sufficient that the voter always have at least r =

2γ + 1 independent evaluations, so that at least γ + 1 of them,
themajority, are guaranteed to be correct and consistent (Lamport
et al., 1982).

In our context, we assume that every sensor reading is correct
as well as the computation of the nominal update function Fi, but
a faulty agent Aj may be subject to the disturbance term dj ≠

0, which alters its final decision and the data that it shares via
message exchange. Under this hypothesis, the strategy to update
every agent state can be the following. If Ai is able to see input
uj, its update rule can simply be xi(t + 1) = uj. If Ai is unable to
see uj, its state can be updated by applying the majority rule on r
estimates xh out of the ones received from its C-neighbors:

xi(t + 1) =


0 if card(S0(t)) > card(S1(t)),
1 if card(S0(t)) < card(S1(t)),

(7)



A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350 2345
where Sz(t) = {h | Ci,h = 1, xh(t) = z} (note that the case
card(S0(t)) = card(S1(t)) cannot occur, since r is odd). The above
majority rule can be written by using only binary operations.
Indeed, Eq. (7) requires that Ai sets to 1 its state if, and only if, at
least γ + 1 messages received from its C-neighbors contain values
xh set to 1, i.e., if there exists a choice of indices i1, . . . , iγ+1 ∈ Ki,
with Ki = {h | Ci,h = 1}, s.t. xi1 = 1, xi2 = 1, . . . , xiγ+1 = 1,
or equivalently s.t. xi1xi2 · · · xiγ+1 = 1. Having denoted by Si =

S(Ki, γ + 1) the set composed of (γ + 1)-tuples from elements
extracted from Ki, the rule can be written as xi(t + 1) =

H∈Si
Πh∈Hxh.

Note that, if γ ∗
≤ γ is the actual number of faults, the number

λγ ∗ of tuples in Si that are guaranteed to give the correct estimate
of uj equals the number of combinations of γ + 1 elements ex-
tracted from the index set of the remaining correct agents, which
is composed of 2γ + 1 − γ ∗ elements, i.e.,

λγ ∗ =


2γ + 1 − γ ∗

γ + 1


=

(2γ + 1 − γ ∗)!

(γ + 1)!(γ − γ ∗)!
.

In the worst case, we have γ ∗
= γ , and thus λγ = 1, which guar-

antees that there exists at least one such secure product.
Moreover, starting from an initial condition in which the

maximum fault number constraint is satisfied, it is necessary that
uj is propagated while guaranteeing that the constraint remains
satisfied. To this aim, consider the sequence of binary vectors I(k)j ,
each containing a non-null element for the agents that are reached
from uj with multiplicity r in at most k steps:

I(k)j (i) =


Vj(i) k = 1,

I(k−1)
j (i) k > 1, card(K k

i ) < r,

1 k > 1, card(K k
i ) ≥ r,

with K k
i = {h | C(i, h)I(k−1)

j (h) = 1}. Let

κ r
i = min

k
{k | I(k)j (i) = 1}

be the step at which Ai is first reached with multiplicity r from uj
and κ r(C, Vj) = max{κ r

1, . . . , κ
r
n} be the visibility diameter with

multiplicity r . We can introduce the reachability matrix

Rr
j (C, Vj) =


I(1)j I(2)j · · · I(n)j


,

whose columns tell us which agents can be securely reached from
input uj.

Definition 7. A pair (C, Vj) is said to be (completely) reachable
with multiplicity r , or r-reachable for short, if the span of the
reachability matrix Rr

j (C, Vj) is the entire graph or, equivalently,

I(n)j = 1n.

Let K ∗

i ⊆ K κi
i be a minimum index set s.t. card(K ∗

i ) = r . We
can now discuss the robustness of the above-described nonlinear
consensus system. The following theorem is a solution to
Problem 2.

Theorem 3 (Robust Nonlinear Consensus). Given a maximum num-
ber γ of possible faults and a (2γ + 1)-reachable pair (C, Vj), where
C is a communicationmatrix and Vj is a visibility vector, the nonlinear
logical system
x(t + 1) = F∗(x(t), uj(t)),
x(0) = x0, (8)
where x0 is an initial state and F∗
= (F∗

1 , . . . , F∗
n )T , with

F∗

i : Bn
× B → B

(x, uj) →


uj if Vj(i) = 1,
H∈S∗

i

Πh∈Hxh if Vj(i) = 0,

with S∗

i = S(K ∗

i , γ + 1), is (C, Vj)-compliant and, for all piecewise
constant inputs uj(t) = ūj, globally converges in atmost κ2γ+1(C, Vj)

steps to an equilibrium x̄ = (x̄1, . . . , x̄n)T s.t.

x̄i = ūj

for all i corresponding to correct agents, i.e., with di = 0.

Proof. Let us first show that the state

x̄ = 1nūj ⊕ (d1, . . . , dn)T

is an equilibrium of the system in Eq. (8), perturbed by a
disturbance vector d = (d1, . . . , dn)T satisfying the maximum
fault number constraint, i.e., with card ({i | di = 1}) ≤ γ . We need
to show that

F(x̄, ūj) ⊕ d = x̄.

Let us proceed by considering the agents as they are reached by
the sequence of vectors I(k)j . If Ai is reached after one step (i.e., it is
able to directly measure the input being Vj(i) = 1), its perturbed
update function gives

xi(t + 1) = ūj ⊕ di = x̄i,

which trivially satisfies the condition. If Ai is reached after two
steps, its update function depends on messages xh received from
a subset composed of 2γ + 1 agents that were reached after one
step. Since we have xh = ūj ⊕ dh = ūj¬dh + ¬ūjdh, Ai’s perturbed
update function gives

xi(t + 1) =


H∈S∗

i

Πh∈Hxh

⊕ di

=

ūj A + ¬ūj B


⊕ di,

with A =


H∈S∗
i
Πh∈H¬dh and B =


H∈S∗

i
Πh∈Hdh. Recall that

Ai is guaranteed by hypothesis to receive at least γ + 1 correct
estimates of ūj from its neighbors and that the cardinality of every
tuple in S∗

i is exactly γ + 1. Therefore, there always exists a tuple
H ∈ S∗

i s.t. dh = 0 for all h ∈ H , and thus s.t. Πh∈H¬dh = 1, which
implies that A = 1. Moreover, provided that the maximum fault
number constraint is satisfied, there does not exist a tuple H ∈ S∗

i
s.t. dh = 1 for all h ∈ H , which implies that B = 0. Therefore, we
finally have

xi(t + 1) =

ūj A + ¬ūj B


⊕ di = ūj ⊕ di = x̄i.

The fact that x̄ is an equilibrium is proved by carrying on with the
same reasoning for all agents as they are encountered by I(k)j . For
every correct agent Ai, the disturbance is null, i.e., di = 0, which
guarantees that they all consent on the value

x̄i = ūj ⊕ di = ūj ⊕ 0 = ūj.

Let us also prove that x̄ is the unique equilibrium and that is
global stable. Without loss of generality, suppose that the agents
are sorted by the order in which they are reached by the vectors
I(k)j . Consider first the agents that are reached after one step. Their
update function F∗

i is independent of the state, and thus their
corresponding rows in the incidence matrix are null. If Ai is an
agent reached after k steps, its updated function F∗

i depends on a
subset composed of 2γ + 1 agents that were reached after k′ < k



2346 A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350
steps, and that necessarily need to have an index h < i. Therefore,
the incidencematrix of F∗ is strictly lower triangular. In the general
case, agents are reached by the vectors I(k)j in generic order, but
they can be reordered by a permutationmatrix P according exactly
to the vector sequence I(k)j . This also implies that B(F∗) is similar
to a strictly lower triangular matrix and thus its spectral radius
needs to be null, i.e., ρ(B(F∗)) = 0 (see Theorem 1). In conclusion,
the update function F∗ is contractive, i.e., it possesses a unique
globally stable equilibrium point x̄. The proof of the convergence
time follows along the same line as that of the linear consensus
approach above, and thus it is omitted. Finally, note that F∗ is
(C, Vj)-compliant by construction. �

Example 5.2 (Cont’d). Consider again the network of Example 5.1.
Suppose that at most γ = 1 agents may be compromised and
incorrectly setting their state.

The required multiplicity is r = 2γ + 1 = 3, which is satisfied
by the pair (C, Vj), as shown by the vector sequence

I(1)j =


1
1
0
1
0

 , I(2)j =


1
1
1
1
0

 , I(3)j =


1
1
1
1
1

 ,

I(4)j = I(3)j .

The synthesis of the robust nonlinear consensus is feasible, and it
gives the update rule
x1(t + 1) = u(t),
x2(t + 1) = u(t),
x3(t + 1) = x1(t) x2(t) + x1(t) x4(t) + x2(t) x4(t),
x4(t + 1) = u(t),
x5(t + 1) = x1(t) x2(t) + x1(t) x3(t) + x2(t) x3(t).

As an example, suppose that agent A1 uncooperatively sets its
statewith the perturbed update function x1(t+1) = ūj ⊕ d1, d1 ≠

0. After three steps, the network converges to the equilibriumpoint
x̄ =


ūj ⊕ d1, ūj, ūj, ūj, ūj

T , where all correct agents consent on
the value ūj. As another example, suppose that agent A3 applies
the uncooperative update function x3(t + 1) = (x1(t) x2(t) +

x1(t) x4(t) + x2(t) x4(t)) ⊕ d3, with d3 ≠ 0. Again the network
reaches the equilibrium point x̄ =


ūj, ūj, ūj ⊕ d3, ūj, ūj

T , and all
correct agents are able to consent on the value of ūj. �

Remark 2. It is straightforward to show that, for γ = 0, Theorem3
produces a linear logical consensus system that is equivalent
to the one obtained by Theorem 2. In principle, one could use
the nonlinear approach even for the case γ = 0; however, the
reachability test and design approach presented for the hypothesis
of virtuous scenario are simpler, and thus should be used when
possible.

Remark 3 (Link Failures). The introduction of the binary distur-
bance vector d in Eq. (6) has enabled the analysis of a logical
system’s behavior in the event of process failure. It also allows dis-
cussing how consensus systems designed according to Theorem 3
behave in the presence of communication failures involving mes-
sage loss, i.e., when some messages from a sender agent Ah may
not reach their recipient agent Ai. Message loss can be caused by a
number of factors, including signal degradation over the network
medium, channel congestion, corrupted packets rejected in transit,
and faulty networking hardware (Pfleeger & Pfleeger, 2004).

As these systems are synchronous, every agentAi must receive,
at every step t , the status of all its C-neighbors, in order to update
its current state xi through the function Fi(x, uj). If the current
status of an agent Ah is not received from time t̄ + 1, a reasonable
choice for Ai is that of holding the most recently received value
xh(t̄). In dealing with this type of malfunctioning, the worst case
occurs when the failure of a link is permanent, i.e., when no
message from a sender Ah can ever reach its recipient Ai. LetM be
the set of agents whose messages are lost by at least one of their
recipients. From the time t̄+1, thedynamic behavior of all agents in
M , as seen from all other the agents, is described by Eq. (6), where
dh(t) ≡ 0 if Ai can receive Ah’s messages, or

dh(t) =


Fh(x(t), ūj) if xh(t̄) = 0
¬Fh(x(t), ūj) if xh(t̄) = 1

, for t > t̄

otherwise. Under the hypotheses of Theorem 3, where γ is the
maximum number of failures in the incoming links of every agent
Ai, all agents i ∉ M correctly converge to a state x̄i = ūj. Moreover,
note that all the agents Ai, with i ∈ M , are still correct processes,
since their failure only involves, by hypothesis, their outgoing links.
Thus, they also correctly compute the update function Fi, which
implies that the entire system converges to the consensus state
x̄ = 1nūj.

6. Distributed synthesis of logical maps

In the previous sections (Sections 4 and 5), we have presented
two strategies allowing all (correct) agents of a network to consent
on the value of the jth input uj. It is worth noting that, given a
logical map f , only a subset of its inputs are actually needed for
its computation, which is captured in the following.

Definition 8. A binary input uj is essential for a decision system
y = f (u) ∈ Bp if, and only if, the incidence matrix of f satisfies
the following relation:
p

i=1

B(f (u))(i, j) = 1.

Given a map f with µ ≤ m essential inputs, consider a simplified
logical map f ∗

: Bµ
→ Bp obtained by fixing the values of all its

non-essential inputs. Note that f ∗ is equivalent to f , i.e., it possesses
the same truth table.

We can now show how the agents can agree on a generic
decision system, which is the main result of the paper.

Theorem 4 (Distributed Synthesis). Given an input visibility matrix
V , a communication matrix C, and a maximum number γ of faults,
a generic decision system y = f (u), with f : Bm

→ Bp and u a
piecewise constant input, can be computed in a distributed way if the
following feasibility inequality holds:

(¬I(n)1 · · · ¬I(n)m )T1n ≤ ¬

B(f (u))T 1m


. (9)

Moreover, network consensus on the decision y can be obtained if
every agent Ai follows the logical consensus rule

Xi(t + 1) = Fi(X(t), u(t)),
Yi(t) = Gi(Zi(t)) = (f ∗

1 (Zi(t)), . . . , f ∗

p (Zi(t))),

where X ∈ Bn×µ and Y ∈ Bn×p are the network’s state and output,
respectively,µ is the number of f ’s essential inputs, f ∗

= (f ∗

1 , . . . , f ∗
p )

is a simplified map equivalent to f involving only such inputs, Fi =

(Fi,1, . . . , Fi,µ)T , where Fi,j is designed by applying Theorem 2, if
γ = 0, or Theorem 3, if γ ≥ 0, to the jth essential input, Zi =

(Zi,1, . . . , Zi,µ), and

Zi,j =


uj if Vj(i) = 1
Xi,j otherwise.



A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350 2347
Proof. Let us first prove the feasibility inequality. Its left term is
the binary vector

(¬I(n)1 · · · ¬I(n)m )T1n =



n
i=1

¬I(n)1 (i)

...
n

i=1

¬I(n)m (i)

 ,

whose jth component,
n

i=1 ¬I(n)j (i), equals unity if, and only if,
I(n)j (i) = 0 for some i, i.e., at least one agent is unreachable from
input uj. In this case, the unique possibility to expect the problem
feasibility is that input uj is unnecessary for the computation of f .

By applying DeMorgan’s law, the inequality’s right term can be
written as

¬(B(f (u))T 1m) = ¬



p
i=1

bi,1

...
p

i=1

bi,p

 =

Π
p
i=1¬bi,1

...

Π
p
i=1¬bi,p

 ,

which is a vector whose jth element, Πp
i=1¬bi,j, equals unity if, and

only if, bi,j = 0 for all i, i.e., none of the decision functions fi depends
on uj. The inequality itself simply expresses the requirement that
the network must be reachable from every input that is essential
for the computation of f .

Furthermore, whenever the inequality is satisfied, every input
can be (robustly) propagated through the network according to
the state update rule Fi of Theorem 2 if γ = 0 or Theorem 3 if
γ ≥ 0. Recall from Remark 2 that the two theorems produce two
equivalent linear logical consensus systems for γ = 0, but the first
design procedure is simpler, and thus is preferable when its use is
possible.

As for the output decision function Gi, observe that, if a generic
agent Ai is able to measure the jth input, it can directly use it to
evaluate the decision function f . If not, it can use the corresponding
local state component Xi,j that, after consensus is reached, will
contain the agreed value uj. This strategy can be formally described
by introducing a fictitious variable Zi,j that equals uj in the first case
and Xi,j otherwise, which concludes the proof. �

Example 6.1. Consider the following task involving computation
of three decisions y = (y1, y2, y3) depending on four inputs u =

(u1, u2, u3, u4):y1(t) = u1(t)¬u3(t),
y2(t) = u3(t),
y3(t) = ¬u2(t) u4(t) + u1(t) + ¬u2(t)¬u4(t).

(10)

Assume that a network of n = 4 agents is available, which is
characterized by the visibility and communication matrices

C =

1 1 0 0
0 1 0 1
0 1 1 0
1 0 0 1

 , V =

1 0 0 0
0 1 1 0
0 1 0 1
1 0 1 0

 .

Let us suppose for simplicity that no fault can occur (γ = 0),
so that a linear logical consensus rule can be adopted to propagate
each input. The span vectors of the inputs are I1 = I2 = I3 =

(1, 1, 1, 1)T and I4 = (0, 0, 1, 0)T , which tell us the network is
completely reachable from u1, u2, and u3, while only agent A3 is
reachable from u4.
Moreover, based on the incidence matrix of the decision
function f ,

B(f (u)) =

1 0 1 0
0 0 1 0
1 1 0 0


,

input u4 is not essential for its computation, and thus no problem
is posed by the fact that the network is unreachable from it.
The distributed synthesis problem is solvable, since the feasibility
inequality is indeed satisfied. Furthermore, the computation of
function f3 formally depends on u4, but a distributed evaluation of
the function cannot involve it. To remove this input, we can replace
it with any value chosen at convenience, e.g., u4(t) = 0, which
gives the simplified decision functiony1(t) = u1(t)¬u3(t),
y2(t) = u3(t),
y3(t) = u1(t) + ¬u2(t).

(11)

By computing an IPST for each input, we obtain the following linear
logical consensus system:X1(t + 1)
X2(t + 1)
X3(t + 1)
X4(t + 1)

 =

 u1(t) X2,2(t) X2,3(t)
X4,1(t) u2(t) u3(t)
X2,1(t) u2(t) X2,3(t)
u1(t) X4,1(t) u3(t)

 ,

where the generic agent’s state is Xi ∈ B1×q with q = 3. Note that
the ith rowof the right termof last equation represents the ith local
update function Fi.

Moreover, each output decision map Gi can readily be obtained
by replacing in Eq. (11) every input uj that is not visible from Ai
with the corresponding state component Xi,j. By doing this, we
obtainY1
Y2
Y3
Y4

 =

 u1¬X1,3 X1,3 u1 + ¬X1,2
X2,1¬u3 u3 X2,1 + ¬u2
X3,1¬X3,3 X3,3 X2,1 + ¬u2
u1¬u3 u3 u1 + ¬X4,2

 ,

where the dependence from t is omitted for brevity. �

Remark 4. Themethod proposed in Theorem 4 can be straightfor-
wardly extended to some switching-topology networks, in which
the topology-switching signal is known. However, such an exten-
sionwould require an IPST to be computed for each possible topol-
ogy configuration, and thus it would remain applicable only to
small-size networks.

7. Application to intrusion detection

7.1. Distributed detection of physical intruders

Consider the problem of detecting possible physical intruders
within an indoor environment W . Suppose that the environment
is divided into m rooms, Wi, i = 1, . . . ,m, separated by walls,
and that n ≥ m guards are responsible for patrolling the rooms.
Each guard has sensors with star-shaped visibility (Vi,j = 1 if, and
only if, an intruder in region Wj can be seen by agent Ai) and can
communicate onlywith neighboring guards that arewithin the line
of sight (Ci,j = 1 if, and only if, Ai can see Aj). The presence or
absence of an intruder in the jth region Wj can be described by a
binary input uj, and the guards’ network is required to compute the
logical decisions yi(t) = ui(t), i = 1, . . . ,m. Denote by X ∈ Bn×m

the alarm state of the system: Xi,j = 1 if agent Ai reports an alarm
about the presence of an intruder in region Wj. The alarm can be
set because an intruder is actually detected by the agent itself, or
based on the information exchanged with neighboring guards. In



2348 A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350
(a) t = 0. (b) t = 1. (c) t = 2. (d) Available
communication graph C .

Fig. 1. (a)–(c) Run of the linear consensus system with two intruders (rhombus) in regions W2 and W10 , respectively. The sequence in the figure shows that a correct
agreement is reached (Xi ’s components are represented by empty (filled) boxes when no (at least one) intruder is detected in the corresponding region). (d) Available
communication graph C .
Fig. 2. Final network decisions with a permanent fault of A1 incorrectly setting
its state to 0. The correct agreement is not reached by the linear consensus system
(left), whereas Ai ’s misbehavior is tolerated by the nonlinear one (right).

this context, our objective is to design a logical consensus system
of the form X(t + 1) = F(X(t), u(t)), with u = (u1, . . . , um)T ,
so that every agent can provide, at consensus, consistent complete
information on the environment if polled, i.e., Xi,j = Xk,j ∀i, k and
∀j. This requires that F has a unique equilibrium depending on the
corresponding column of 1nf (u)T = 1nuT .

In case of a virtuous scenario, we can apply Theorem 2, which
produces a linear logical consensus of the form X(t + 1) =

F X(t) + B u(t), where each row basically expresses the rule that
an observer alarm is set at time t +1 if it sees an intruder (through
u), or if one of its communication neighbors was set at time t .
The visibility diameter is κ(C, V ) = 2, which will correspond
to the maximum number of steps before consensus is reached.
Fig. 1 shows snapshots from a typical execution of this linear
consensus system in which every agent converges to consensus
after two steps. If all agents correctly set their alarm states, the
system correctly converges to a state in which all columns of X
are either 0 or 1. However, this system is not robust to permanent
faults (Fig. 2). A more conservative mechanism can be obtained by
applying Theorem 3, with γ = 1, that generates a nonlinear rule
requiring that agent Ai sets an alarm regarding Wj at time t + 1
if at least two neighboring sensors having visibility on Wj are in
alarm at time t , or if it sees an intruder (through u). The false alarm
raised by the misbehaving agent A1 is thus correctly handled by
the second system.

7.2. Detection of malicious users in networked distributed systems

Consider a network of n hosts comprising a set Γ of fully
operational workstations and a set W of simpler computers with
limited functionalities. Neighboring hosts can communicate via
wired and/or wireless links. Authorized users can log in at any
host and are allowed to create files, launch applications, open
Table 2
Possible events generated by a malicious user trying to attack a distributed
computer network.

Event Description

ai The user creates a file in its home folder on the ith workstation
bi The user creates a file in the ith workstation’s system folder
ci The user launches an application on the ith workstation
di,j The user opens more than p TCP–IP connections between the ith and

jth workstations

P2P connections, etc. Protection against malicious users trying
to spread viruses or spyware through the network, for example,
to cause damage or gather classified information, is necessary.
We assume that traces of possible threats are known so that a
model-based approach to such intrusion detection problem can
be adopted. We assume also that the generic ith host is able to
measure input events generated by actions of a user on the same
host and on neighboring ones. The list of events corresponding to
critical user’s actions is reported in Table 2.

Two types of attack are assumed to be possible depending on
the host type the menace is started from. On a fully operational
workstation, manifest evidence of an attack is represented by
the user creating a file in the host’s system folder, launching an
application on it, establishing a large number of connections with
another host j, launching a remote application on j, and then
establishing a large number of connections with a third host k.
From a simpler computer, an intruder may try to get some hosts
stuck by establishing a round connection among them and creating
no file.

The input event vector is u ∈ Bm, with

u = (a1, . . . , an, b1, . . . , bn, c1, . . . , cn,
d1,1, . . . , d1,n, d2,1, . . . , d2,n, . . . , dn,1, . . . , dn,n)T ,

and m = n2
+ 3n. The two considered attacks can be detected by

the centralized decision task

y = (y1, y2)T = f (u),

where the logical vector function is

f : Bm
→ B2

u →



i∈Γ

bi ci

j≠i


di,j cj


k≠i,j

dj,k



i∈W

¬ai

j≠i


di,j¬aj


k≠i,j

¬ak dk,i


 .

The communication matrix C is s.t. Ci,j = 1 if, and only if,
host j is a neighbor of host i. Moreover, input events ai, bi, ci, for
i = 1, . . . ,N , can be directly seen from the ith host and its one-hop



A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350 2349
Fig. 3. Value of the input event vector u = (a1, . . . , a50, b1, . . . , b50, c1, . . . , c50,
d1,1, . . . , d50,50), representing the activity of a malicious user, including creation of
a file in the system’s folder of host 33, launch of an application on the same host,
opening a large number of connections from host 33 to host 50, remotely start of
an application on host 50, and opening of a large number of connections from host
50 to host 1.

neighbors, while the input events di,j, for i, j = 1, . . . ,N, i < j, can
be seen both form the ith and jth hosts, and from their neighbors,
i.e.,

V = (Va, Vb, Vc, Vd) ,

with Va = Vb = Vc = V̄ , V̄ (i, j) = 1, if, and only if, host j is a
neighbor of host i, and

Vd(i, j) = V̄ (i, α(j)) + V̄ (j, α(i)) ,

with α(k) =
 k

n


+ 1. We assume that at most γ hosts can

return incorrect estimates of a user action. We want to realize a
distributed network intrusion detector that is able to discover a
malicious user only via communication and consensus.

By using the approach proposed in Section 6, we have realized a
distributed network intrusion detection system for a system with
n = 50 hosts, and thus m = 2650 input events. The size of each
agent state is aligned with 332 bytes, which can be afforded by
commercially availablewireless connection types. Indeed, both the
802.11x and the 802.15.4 protocols allow for exchangingmessages
of at most 2200 bytes and 169 bytes, respectively. Thus, each agent
can share its full state with one of its neighbors by sending at most
two messages of such commercial protocols. We have assumed
γ = 2 and chosen a communication matrix C ensuring that
each pair (C, Vj) is 5-reachable. The obtained visibility diagram is
κ(C, V ) = 23. In the simulation, a malicious user is performing an
attack of the first type that is ‘‘hidden’’ in other normal operations:
it creates a file in the system’s folder of host 33, launches an
application on the same host, opens a large number of connections
from host 33 to host 50, remotely starts an application on host
50, and finally opens a large number of connections from host
50 to host 1. Moreover, in the simulation, a first compromised
host, host 23, always returns the opposite of the value that it
detects, while a second compromised host, host 38, is stuck to the
value 0. Fig. 3 reports the network’s input representing the above-
described behavior of the user. The centralized decision system
applied to the above-described input gives y = f (u) = (1, 0)T ,
indicating that an attack of the first type is recognized. Each host
is able to process local information as well as information received
from neighboring monitors, via a distributed nonlinear consensus
rule that is obtained by applying Theorem 4. Fig. 4 reports the
evolution of the network consensus, while Fig. 5 shows that the
total disagreement e = (e1, e2)T of local hostsw.r.t. the centralized
detection task f (u), i.e.,

ei =

n
j=1

fi(X(j, :)) ⊕ fi(u),

where Xi,j is the ith local monitor estimate of the jth input event,
and


represents here the sum of two real numbers, converges to

zero. The two figures show that the entire network is able to detect
user maliciousness, as expected from theory, even in the presence
of the two compromised local monitors.

8. Conclusion

A novel mechanism enabling network consensus on the value
of decision functions depending on binary values has been intro-
duced. Two design procedures for the synthesis of optimal logi-
cal consensus systems with and without agent failures have been
proposed. While the approach allows the design of distributed up-
date rules, the design phase itself requires complete knowledge
of the communication and visibility matrices. It is worth saying
that, in applications where suboptimal communication paths are
acceptable, one would also consider heuristic flooding approaches
Fig. 4. Simulation run of a distributed computer network with 50 hosts. Local hosts are able to detect the user maliciousness by running a distributed nonlinear logical
consensus rule. Only four of the 50 hosts are reported, at four distinct iterations during convergence to consensus, which is reached after 17 steps.



2350 A. Fagiolini, A. Bicchi / Automatica 49 (2013) 2339–2350
Fig. 5. Total disagreement e = (e1, e2)T of local hostsw.r.t. the centralized decision
y = (1, 0)T . The convergence of e to zero indicates that a first-type attack executed
by the malicious user is detected.

to propagate all binary inputs (Lim & Kim, 2001). Future work will
study how to obtain a fully distributed design synthesis. Some pre-
liminary results can be found in Fagiolini, Martini, Di Baccio, and
Bicchi (2010).

References

Bertsekas, D. P., & Tsitsiklis, J. N. (2003). Parallel and distributed computation:
numerical methods. Englewood Cliffs.

Bhandari, Vartika, & Vaidya, Nitin H. (2005). On reliable broadcast in a radio
network. In ACM symp. on principles of distr. computing (pp. 138–147).

Bicchi, A., Fagiolini, A., & Pallottino, L. (2010). Toward a society of robots: behavior,
misbehavior, and security. IEEE Robotics & Automation Magazine, 17(4), 26–36.

Blondel, V. D., Hendrickx, J. M., Olshevsky, A., & Tsitsiklis, J. N. (2005). Convergence
inmultiagent coordination, consensus, and flocking. In IEEE conf. on decision and
control (pp. 2996–3000).

Bullo, F., Cortés, J., & Martínez, S. (2009). Applied mathematics series, Distributed
control of robotic networks. Princeton University Press.

Cortés, Jorge (2008). Distributed algorithms for reaching consensus on general
functions. Automatica, 44(3), 726–737.

Cortés, J., Martinez, S., Karatas, T., & Bullo, F. (2004). Coverage control for mobile
sensing networks. IEEE Transactions on Robotics and Automation, 20(2), 243–255.

Di Marco, M., Garulli, A., Giannitrapani, A., & Vicino, A. (2003). SLAM for a team of
cooperating robots: a set membership approach. IEEE Transactions on Robotics
and Automation, 19(2), 238–249.

Fagiolini, A., Martini, S., Di Baccio, D., & Bicchi, A. (2010). A self–routing protocol
for distributed consensus on logical information. In IEEE intl. conf. on intelligent
robots and systems (pp. 5151–5156). October.

Fagiolini, A., Visibelli, E. M., & Bicchi, A. (2008). Logical consensus for distributed
network agreement. In IEEE conf. on decision and control (pp. 5250–5255).

Fang, L., Antsaklis, P. J., & Tzimas, A. (2005). Asynchronous consensus protocols:
preliminary results, simulations and open questions. In IEEE int. conf. on decision
and control and Eur. control conference (pp. 2194–2199).
Lamport, L., Shostak, R., & Pease, M. (1982). The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3), 382–401.

Lim, H., & Kim, C. (2001). Flooding in wireless ad hoc networks. Computer
Communications, 24, 353–363.

Lynch, Nancy A. (1996). Distributed algorithms. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Marzullo, Keith (1985). Maintaining the time in a distributed system: a loosely-
coupled distributed service. Dissertation Abstracts International, B: The Sciences
and Engineering , 46(1).

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233.

Pasqualetti, F., Bicchi, A., & Bullo, F. (2012). Consensus computation in unreliable
networks: a system theoretic approach. IEEE Transactions on Automatic Control,
57(1), 90–104.

Perlman, R. (1989). Network layer protocols with byzantine robustness. Ph.D.
Thesis. MIT.

Pfleeger, Charles P., & Pfleeger, Shari Lawrence (2004). Security in computing.
Prentice Hall.

Ren, Wei, & Beard, Randal W. (2008). Distributed consensus in multi–vehicle
cooperative control: theory and applications. Springer.

Ren,W., Beard, R.W., & Atkins, E. M. (2007). Information consensus inmulti-vehicle
cooperative control. IEEE Control Systems Magazine, 27(2), 71–82.

Robert, F. (1980). Itérations sur des ensembles finis—convergence d’automates
cellulaires contractants. Linear Algebra and its Applications, 29, 393–412.

Schenato, L., & Gamba, G. (2007). A distributed consensus protocol for clock
synchronization in wireless sensor network. In IEEE conf. on decision and control
(pp. 2289–2294). December.

Sundaram, S., & Hadjicostis, C. N. (2011). Distributed function calculation via linear
iterative strategies in the presence of malicious agents. IEEE Transactions on
Automatic Control, 56(7), 1495–1508.

Adriano Fagiolini is Assistant Professor at the University
of Palermo. He graduated in Computer Science Engineer-
ing from the University of Pisa in 2004. He received his
Ph.D. in Robotics and Automation from the University of
Pisa in 2009. He has been a summer student at the Eu-
ropean Center for Nuclear Research (CERN), Geneva. He
enrolled in the International Curriculum Option of doc-
toral studies in hybrid control for complex, distributed and
heterogeneous embedded systems, and has actively par-
ticipated in various European projects. He has led the Uni-
versity of Pisa’s team at the first European Space Agency’s

Lunar Robotics Challenge, which resulted in a second place prize for the team. His
research interests include Boolean and set-valued consensus, and intrusion detec-
tion in distributed multi-robot systems.

Antonio Bicchi is Professor of Robotics and Control Sys-
tems at the University of Pisa, and Senior Scientist at the
Italian Institute of Technology in Genoa. He graduated
from the University of Bologna in 1988 and was a postdoc
scholar at M.I.T. Artificial Intelligence lab in 1988–1990.
Antonio Bicchi is the recipient of several awards and hon-
ors, including an individual Advanced Grant from the Eu-
ropean Research Council for his research on human and
robot hands in 2012. He has published more than 300
papers on international journals, books, and refereed con-
ferences. He has served as the Director of the Interde-

partmental Research Center ‘‘E. Piaggio’’ of the University of Pisa in the period
2003–2012. He currently serves as the President of the Italian Association or Re-
searchers in Automatic Control.


	On the robust synthesis of logical consensus algorithms for distributed intrusion detection
	Introduction
	Problem statement
	Convergence of logical dynamic systems
	Linear logical consensus systems
	Dealing with agent failure
	Distributed synthesis of logical maps
	Application to intrusion detection
	Distributed detection of physical intruders
	Detection of malicious users in networked distributed systems

	Conclusion
	References


