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Behaviors, Misbehaviors,
and Security

BY ANTONIO BICCHI, ADRIANO FAGIOLINI,
AND LUCIA PALLOTTINO

In this article, we consider how a very large numbers of robots,
differing in their bodies, sensing, and intelligence, may be
made to coexist, communicate, and compete fairly toward
achieving their individual goals, i.e., to build a society of
robots. We discuss some characteristics that the rules defin-

ing acceptable social behaviors should possess. We consider
threats that may be posed to such a society by the misbehaviors
of some of its members, either due to faults or malice, and the
possibility to detect and isolate them through cooperation of
peers. The article presents examples of motion control proto-
cols, for arbitrarily large groups of heterogeneous robots. We
discuss intrusion detection algorithms, which allow detection
of deviance from such rules, and algorithms to build a consen-
sus view on the environment and on the integrity of peers, so
as to improve the overall security of the society of robots.

Since its birth 50 years ago, robotics has witnessed a large
growth and profound change in scope. Robots of the past
were manipulators or vehicles designed to work in isolation.
Robots of the present, or immediate future, are machines
that are close to, and even in touch with humans: cognitive
and physical human–robot interaction are nowadays among
the most studied aspects of the discipline. However, the trend
shown by available market data (Figure 1) seems to anticipate
an even more surprising future, when personal robots will be
so many and so ubiquitous that the core scientific and techni-
cal issues might become those of robot–robot interaction.

Indeed, in recent years, the increase in the use of service
robots around the world has taken over the stagnating market
of industrial robots. It has been estimated that 49,000 profes-
sional service robots and 11.6 million personal service robots

will be sold between 2009 and 2012, reaching a total world
robot population of nearly 13 million by around 2011 or
2012. Most of these service robots will be very different from
the traditional stereotype of large heavy industrial manipula-
tors, and, probably, no other stereotype will develop—as there
will be possibly as many robot types as applications, and makers
and models.

Large systems of many autonomous but networked units,
capable of acting in and on the environment, will soon be a
reality. Robots will be many, autonomous, possibly fast, and
very heterogeneous. The functions and structure of multiro-
bot systems could be different [1]. One possibility is that robots
could be organized in teams, flocks, or swarms, to more effec-
tively and robustly pursue a goal, which is shared by all mem-
bers. In this case, the paradigm of emergent behaviors is often
used to describe the coordination of large numbers of robots
with limited individual capabilities, which achieve complex
tasks (see e.g., [2]–[6]). When more complex robots put their
specific capabilities at the disposal of a common goal, the para-
digm of intentional cooperation is evoked [1].

In this article, we are interested in the case when the robots
do not share the same goals but have independent and possibly
conflicting purposes, while they are supposed to coexist and
behave so that the accomplishment of their mission does not
jeopardize the chances of others. In other words, we will be
concerned with the organization of a society of robots.Digital Object Identifier 10.1109/MRA.2010.938839
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The existence of a future society of robots is easy to
predict—just consider present-day highways, where vehicles
possess an ever-increasing amount of sensors, actuators, com-
munication, and intelligence capabilities: an advanced car model
is, as of today, already more of a robot than most industrial
manipulators used in its own assembly. Most of the traffic rules
that make coexistence of vehicles possible on the highway are
currently implemented by drivers, but some automatic manage-
ment systems are already commercially available (e.g., distance
keeping in queues), and more are soon to come.

Looking a bit further ahead, one can easily imagine personal
robots going to shop for the family (Figure 2). The user might
take the robot to the local mall where the robot would get
authenticated and accepted. The robot could obtain informa-
tion on goods and their locations, fill the cart (checking the list
prepared by smart appliances in the house), wait in the queues,
etc., while the owner makes time for more amusing activities.

It is interesting to speculate on what is that that makes this
scenario impossible today and what breakthroughs could ena-
ble it tomorrow. The mall could easily provide its customers
with services such as localization beacons, navigation maps,
and power recharging. In such a structured environment, the
ability for robots to navigate the department store is already
available or soon will be, and so are those that needed to fill
and push the cart around. Electronic transactions are no prob-
lem, neither are wireless communications between the robots
and the infrastructure or among the robots themselves. Per-
haps the major obstacle would be that tens or hundreds of
robots going about their individual programmed missions
would compete for resources (e.g., room, power, and goods),
possibly creating conflicts and ending up in traffic deadlocks,
collisions, or even safety hazards.

To negotiate the potential conflicts, communication and
interaction among robots will have to be codified in a set of
rules to which different robot producers and infrastructure
authority adhere. Protocols and architectures for providing
services such as communication or localization might be
derived from current and developing standards for sensor
networks and cyberphysical systems (see e.g., [7]). For exam-
ple, a scalable component-based platform for decentralized
traffic management of a multirobot system was described in
[8]. On the other hand, establishing rules for the physical
interaction of robots, i.e., what behaviors are acceptable in
the society, is a very challenging problem that has been
explored only to a limited extent so far. Various available
approaches differ in the extent to which robot team members
are aware of or recognize the actions of their teammates and
discuss to which extent they should use this information to
affect their own actions [9]–[11].

Pioneering work on methods for negotiating traffic and
avoiding collisions based on rules includes those reported in
[12] and [13]. The idea of defining group behaviors was for-
malized and presented in [14], although in a cooperative
framework. Behavior-based techniques are used for coordina-
tion in multiagent RoboCup teams (see e.g., [15]). More
recently, applications of protocol-based collision avoidance
methods in a marine scenario has been presented in [16],

where a multiobjective optimization is proposed to deal with
situations where multiple rules are simultaneously activated.

Comparing the state of the art with the analysis of the mall
scenario, several challenging problems are still outstanding.
First, guarantees on safety (collision avoidance with robots and
humans) and performance (ensuring that each robot eventu-
ally gets a chance to accomplish its mission) must be provided
in the presence of many agents, whose number is not known
or can be bounded beforehand. The society should allow new
robots to get in, or to leave, at any time, irrespective of their
model, type, size, or weight of the robots—provided only that
they abide to the society’s rules.

Scalability, heterogeneity, and reconfigurability are thus
fundamental requirements for a system of behaviors for a soci-
ety of robots. A very effective way of achieving these features
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Figure 1. The world robot population. (IEEE Spectrum with data
from World Robotics 2009, published by the International
Federation of Robotics.)

Figure 2. A futuristic mall scenario. [Photo courtesy of http://
www.123rf.com/. ª Igor Stepovik (mall) and Kirsty Pargeter
and Sarah Holmlund (robots).]

Scalability, heterogeneity,
reconfigurability, and security are
thus fundamental requirements
for a system of behaviors for a

society of robots.
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is decentralization, i.e., decisions should be made by each
agent autonomously and should be based on information
limited to a local neighborhood of each robot, reducing the
role of a central authority to the minimum necessary.

A system that relies on social behaviors to mitigate the excess
of individualism is intrinsically very sensitive to the possibility
that misbehaviors occur, either due to faults in some robots or
malicious programming of agents. Thus, security requirements
are crucial for a society of robots, which imply the capability to
detect, isolate, and neutralize the threat posed by misbehaving
robots (see e.g., [17], the articles on fault tolerance in robot
swarms [18] and on the ALLIANCE architecture [19], and
references therein). In a society of autonomous robots, intrusion
detection must also rely on information available locally and on
limited knowledge of a model for the behavior of other robots.

A common problem with overcautious security policies is
that they can make the system too stiff and ineffective. In a
heterogeneous robot society, a robot should not deem another
robot to be a malevolent intruder just because it behaves dif-
ferently, as far as that behavior does not pose a threat. Hence, a
problem of detecting which type of behavior other robots in
the neighborhood is following, or which species they belong
to, is also in order.

In this article, we discuss the above challenges and present
work toward solving some of them. This article’s first contri-
bution is the formalization of a cooperation protocol by which
societies of interacting robots can be described at a suitable
abstraction level. We show examples of motion control proto-
cols that guarantee collision avoidance for arbitrarily large
groups of heterogeneous robots and discuss intrusion detection
algorithms, which allow detection of deviance from such rules.

The description of a local misbehavior detector, representing
the second contribution of the article, is also presented. We
also present algorithms to build a consensus view on the envi-
ronment and on the integrity of peers, so as to improve the
overall security of the society of robots. Furthermore, we show
a biologically inspired example of social coordination protocol
enabling a group of antlike robots to cooperate during the for-
aging of the same group. This is based on the use of a local clas-
sifier by which individuals can distinguish neighboring robots
obeying to a different set of rules and thus belonging to a dif-
ferent species or social groups.

Social Behaviors as Hybrid Automata
Behavior-based societies of robots can be built by giving a set of
rules that each agent should follow, which are only based on local
information and communication between neighboring agents.
Such rules can usually be described in the form of an automaton,
with states corresponding to decisions or actions, and transitions
triggered by locally evaluated conditions. A first example of a
multirobot system that has conflicting individual goals but can
negotiate crossroads by following a set of elementary rules is
reported in Figure 3. The second example, where the mission
goal is shared among all the members of the society, is the forma-
tion control protocol proposed by Arkin [14] (Figure 4).

Although simple rule sets may well serve the purpose for a
limited number of robots, a problem may arise when the same
rule set is applied to larger and/or safety critical systems,
whether it can be guaranteed that vehicles will not get into
deadlocks or even crash into each other. To provide such guar-
antees, a formal description of behaviors is in order. One should
observe that, in dealing with physically embodied autonomous
agents such as robots, traditional automata theory is limited
because of the lack of expressivity power to model continuous
dynamics. The hybrid automata formalism and verification
techniques can be effectively used for that purpose.

A motion cooperation protocol P that can describe the
behavior of the individuals, A1, . . . ,An, of a robotic society
can be formalized as follows. For each robot Ai, the protocol
must specify:

u a configuration vector qi 2 Q, where Q is a configura-
tion space

¬ei

¬eiσi (0)

ei

ei

ei = ″Right Street Occupied″

¬ei

ei

(a) (b) (c) (d)

Figure 3. Autonomous laser-guided vehicles in a warehouse can efficiently move products, from carrier tapes to storage piles, and
avoid robot–robot and robot–human collisions, by following a very simple motion control protocol requiring that every robot give
way on its own right. (a) Protocols’ automaton, (b) initial configuration, (c) intermediate configuration, and (d) final configuration.

Reaching a global agreement on
the presence of a misbehaving
robot is essential to neutralize or
reduce the threats that it may pose
to the society.
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u a discrete state ri 2 Ri, where Ri is the set of allowed
actions or decisions

u a dynamic map fi describing how the agent’s configura-
tion is updated:

_qi ¼ fi (qi, ui),

where ui is the input vector
u a controller map gi that, based on the agent’s current config-
uration qi and discrete state ri, returns the control value

ui ¼ gi(qi,ri);

u a detector map di ¼ (di,1, . . . , di,ji ) returning a binary
vector ei, whose jth component activates if a local condi-
tion di;j on the presence or absence of other agents in
Ai’s vicinity/neighborhood holds, i.e.,

ei ¼ di(qi, vi),

where vi ¼ fqi1, . . . , qipg is the set of configuration vec-
tors ofAi’s neighbors

u an automaton di describing how the agent’s current
action ri is updated based on the event vector ei:

rþi ¼ di(ri, ei):

As such, the behavior of a robotic agentAi adhering to P is
described by the hybrid dynamics [20]

(_qi, rþi ) ¼ Hi(qi, ri, qi1 , . . . , qip ),
qi(0) ¼ q0i , ri(0) ¼ r0i ,

!

where q0i and r
0
i are the initial configuration and discrete state,

respectively, and i1; . . . ; ip are the indices of Ai’s neighbors.
The architecture of an agentAi adhering to the generic proto-
col is depicted in Figure 5.

We say that a cooperation protocol P is fully distributed if
it involves only local interaction within a maximum number
N of agents, i.e., ip # N , where N is independent of the total
number n of agents.

As an example of successful application of the hybrid
automata theory, consider the problem of managing the traffic
of an unbounded number of unmanned aerial vehicles
described in [21]. Therein, Pallottino et al. proposed a motion
coordination protocol, involving of a set of fully decentralized
behaviors, whose correctness in terms of safety and deadlock
avoidance was proven through application of formal methods.
The protocol, known as generalized round-about policy
(GRP), realizes a scalable ðN ¼ 6Þ and reconfigurable multi-
robot system. Although the proof of correctness was given for
aerial vehicles with the same size, it is straightforward to extend
the result to vehicles with different sizes (see Figure 6).

Another example of multirobot system that can be formalized
according to the above protocol, and that we will consider in
more detail, is represented by n cars in a highway following a set
of traffic rules to avoid collisions (Figure 7). Car 01 initially slows
down due to the presence on its front lane of car 04, which, in
turn, turn right as its next right lane is free. Car 03 later starts a left
turn as car 01 occupies its immediate front lane and its next left
lane is free. Finally, car 02 slows down as its front lane is occupied
by car 04 and its next left lane is also occupied by the cars 00 and
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qi = f (qi, σi)
·

ui = g (qi, σi)

Figure 5. Architecture of a generic agent Ai following a
motion cooperation protocol P.
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Figure 4. A behavior-based formation control protocol enabling a set of autonomous vehicles to achieve a common mission
goal (cf. [14]). (a) and (b) Protocols’ automata and (c) example of system’s evolution.
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01. Each car has its own dynamics fi and local controller gi, and its
pilot is supposed to decide a suitable maneuver, i.e., accelerate
(FAST) or decelerate (SLOW), change to the next left lane
(LEFT) or to the right one (RIGHT), based on the presence or
absence of other cars in its neighborhood. For example, the pres-
ence of a slower car in the front and a free lane on the left requires
the execution of an overtake that is a change from a FAST to a
LEFTmaneuver. These rules are those of a very large systemwith
possibly hundreds of vehicles but require that every car verify the
existence and/or absence of N other cars in its vicinity only,
where N is a small number depending only on the geometry of
the lanes and of the vehicles.

Misbehaviors and Local Detection
Heterogeneous robots may happen to have different proto-
cols: for instance, in the automated highway example, a
vehicle obeying the left-hand traffic rules may happen to
access a right-hand automated highway. Some robots may
experience sensor or actuator failure and thus be unable to
follow the protocol rules. Finally, since robot communica-
tion is based on a wireless network, an adversary could easily
eavesdrop on communication as well as inject/modify
packets. In such cases, safety requires that the society must
be able to recognize such failures or intrusions to activate
countermeasures to preserve the overall system and its
individuals.

We define misbehaving an agent when the evolution of its
state (qi, ri) does not comply with the agent’s hybrid modelHi

described by the motion cooperation protocol P. We use the
term intruder robot as a synonym of misbehaving agent. Misbe-
havior detection in fully distributed settings represents a tough
challenge, mainly because the system’s state is only partially
known to a local observer. Consider, e.g., the scenario depicted
in Figure 8, where a local observer on the car 00 is trying to
learn whether the car 04 is cooperative or not. Not having full

access to the information available for the car 04, it is difficult
for the observer to decide whether the pilot is correctly driving
or if it is simulating the presence of another car that is hidden to
the observer’s view or outside of its range of visibility. In such
cases, a decision on (mis)behavior classification should be post-
poned until enough evidence is collected.

A fully distributed misbehavior detector, or intrusion
detection system (IDS), can be systematically generated once
the motion cooperation protocol P is given [20]. The IDS
endows an agentAh with the ability to classify another neighbor-
ing agentAi as certainly cooperative, certainly uncooperative, or
still uncertain, based only on locally observed behaviors. The
IDS consists of two components: a local monitor process, by
which Ah can estimate a local map of occupancy Mi;h of Ai’s
neighborhood, and a consensus process, described in the fol-
lowing section, that allows computation of a unique global
view of the map.

More precisely, a local monitor is a set-valued observer eHi

that computes all possible behaviors ~qi that an agent Ai can
execute based on the measure !qi of its current configuration
and on the information of the neighbor set !vi that are visible
fromAh (Figure 9). The output of a local monitor is

(~qi,Mi,h) ¼ eHi(!qi,!vi,Vh),

where Vh is the current visibility region of the observer on
Ah [22].

Operation of each local monitor consists of a prediction
phase and a classification phase. The predictor used during the
first phase is composed of

u a copy of the target agent’s dynamics fi and a copy of its
controller map gi

u an uncertain encoder map ~di estimating the event vector
êi, based on local measurement of Ai’s configuration, !qi,
its known neighbors !vi, and the observer’s visibility
region Vh:

êi ¼ ~di(!qi,!vi,Vh), (1)

u an uncertain automaton defined through the nondeter-
ministic map
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Figure 6. Automaton of the GRP motion coordination protocol and snapshots from a simulation run of the social behavior of 20
heterogeneous aerial vehicles following the protocol: (a) protocols’ automaton, (b) initial configuration, (c) evolution of the
system, and (d) final configuration

We use the term intruder robot as a
synonym of misbehaving agent.
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~di(r̂i, êi) ¼ f!r 2 Ri j 9 r 2 r̂i j !r ¼ di(r, êi)g ,

describing how the agent’s estimated action r̂i is updated
based on the estimated event vector êi:

r̂þi ¼ ~di(r̂i, êi): (2)

During the second phase, all predicted behaviors ~qi are
compared against the measured one !qi. A behavior !qi(t) com-
plies with modelHi if

jj!qi(t)& ~qi(t)jj # e, for all t 2 Tk,

where Tk ¼ ½tk, tkþ1) is the kth observation period, e is a suitable
precision, and jj ( jj is the Hausdorff norm. When no predicted
behavior complies with the model, the agent is certainly
uncooperative; if there is a unique behavior complying with the
model and not depending on the region outside Ah’s visibility
range, the agent is certainly cooperative; otherwise, it is possibly
cooperative, and thus the value uncertain is chosen.

Consider four cars in the highway example [Figure 10(a)].
Misbehavior of car 00, running a FAST maneuver along the
second lane, while its next right lane is free, has to be
detected (the car should start a RIGHT maneuver to return
to the first lane). A FAST maneuver of a car in the second
lane implies that the region on its right is occupied by
another car. Three local monitors on the other cars try to
learn whether the car 00 is cooperative or not but have no
full view of its neighborhood of car. Figure 10(b) reports the
local maps of occupancy,M00;01,M00;02, andM00;03, that each
monitor has reconstructed.

I unobs
4

I obs
4

V0

V0

Figure 8. Example of partial visibility of a local observer. The
observer on the car 00 has difficulty discerning whether the
pilot of car 04 is correctly driving or it is faking the presence of
other cars that are outside the observer’s view.
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Figure 9. Architecture of a local monitor onboard of agent Ah
that is able to estimate the cooperativeness of an agent Ai by
using only local information.
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automaton, (b) initial configuration, (c) intermediate
configuration, and (d) final configuration.
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Figure 10 shows that all local monitors remain uncertain on
the cooperativeness of car 00, as possible cooperative behaviors
could take place based on their partial visibility. The dashed
box in the yellowish area outlines the target agent neighbor-
hood; a blue circle specifies the current monitor; red (green)
areas are nonvisible regions, where the presence (absence) of a
car is required. A colored circle around the target robot (green,
yellow, or red) specifies its estimated cooperativeness (cooperative,
uncertain, or uncooperative, respectively).

As a second example, consider eight cooperative cars
[Figure 11(a)] and focus on the local view of car 00’s monitor
[Figure 11(b)]. The presence of car 07 is detected [region (a)],
based on the fact that car 06 is executing a SLOW maneuver.
The presence of car 05 is detected [regions (e) and (f )], based
on the FAST maneuvers on the second lane executed by cars
03 and 04. This also allows the detection of car absence in
front of car 03 [region (b)] and car 04 [region (c)]. To the local
monitor, all these neighboring cars are uncertain except car 01
that is certainly cooperative. The example is used to show the
fact that, although this goes beyond the scope of the article, a
local monitor’s uncertainty in the classification of a neighbor
can be reduced by cross-correlating maps of occupancies of
different neighbors: the occupancy map M03;00 contains a free
region [(b) in the figure] in front of car 03, and an occupied
region [the union of (d) with (e)] on its right, whileM02;00 con-
tains a free region [same (d) in the figure] in front of it. There-
fore, the region d in M03;00 must be removed, and the only
possibly occupied region must be ðeÞ.

Consensus for Misbehavior Detection
Reaching a global agreement on the presence of a misbehav-
ing robot is essential to neutralize or reduce the threats that it
may pose to the society. To this aim, for every robotic agent
Ai, a unique consensus view Mi of the occupancy map of its
neighborhood explaining its actual behavior should be com-
puted through local information exchange in a communica-
tion network G. It is important to notice that we consider
only misbehaviors at the motion execution level, while we
assume that the exchange of information between agents is
correct, and no collusion exists between a robot executing an
incorrect motion and another robot trying to justify it. The
problem of reaching consensus on information corrupted by
intruders is a classical one in computer science [23] and is not
investigated here. Obviously, the problem of detecting simul-
taneous motion and information misbehaviors is much more
complex and is left for further studies.

The approaches to consensus establishment traditionally
developed within the control community involve algorithms
that are modeled as linear systems and that are able to combine
data represented by real scalars or vectors (see e.g., [5] and
[24]). Theoretical results on the convergence toward a consen-
sus to the average of the initial estimates of local agents are fully
available. However, outputs from local monitors are continu-
ous sets representing free and occupied regions in the neigh-
borhood of a generic agent Ai, and they cannot be trivially
merged by using such algorithms. The need to overcome the
limitations of the linear consensus framework is indeed

(a)

(b)

Figure 10. (a) Misbehavior of car 00, running a FAST
maneuver along the second lane, while its next right lane is
free, has to be detected. (b) Local maps of occupancy, M00;01,
M00;02, and M00;03, that local monitors on the cars 01, 02, and
03 have reconstructed.

(a)

(c)(b)

(d) (e) (f)

(a)

(b)

Figure 11. (a) Eight cooperative cars and (b) view of the
monitor on car 00. A local monitor’s uncertainty in the
classification of a neighbor can be reduced by cross-correlating
maps of occupancies of different neighbors.

A fully distributed misbehavior
detector can be systematically
generated once the motion
cooperation protocol P is given.
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emerging in various distributed robotic applications, and
different forms of nonlinear iterative rules are under devel-
opment (see e.g., [25]).

A solution to our problem is provided by the set-valued
consensus approach, initially proposed in [20] and then further
investigated in [26]. The approach is based on the following
theorem ensuring that every local agent consents on the deci-
sion of a hypothetical centralized monitor that is able to collect
and merge all initial estimates in one step:

Theorem 1: A network of n agents with fixed communica-
tion topology described by a graph G and evolving according
to the distributed rule

Xi(t þ 1) ¼ F(Xi(t),Xi1 (t), . . . ,Xini (t)),
Xi(0) ¼ Ui,

!

for all i, where Ui is agent Ai’s initial measure, i1, . . . , ini are
the indices of its communication neighbors inG, and F is a so-
called updated function, converges to the consensus state

X ¼ (X), . . . ,X)
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n times

)T , with X) ¼ F(U1, . . . ,Un),

in at most ~n ¼ diamðGÞ steps, ifG is connected and F is
u commutative (F(X1,X2) ¼ F(X2,X1)),
u associative (F(X1,F(X2,X3)) ¼ F(F(X1,X2),X3)), and
u idempotent (F(X1,X1) ¼ X1),

for all its input arguments X1,X2,X3.

Application of this result to the misbehavior detection
problem is straightforward. The state of each agent Ah trying
to learn whetherAi is cooperative or not is initialized with the
occupancy map Mi;h that it has locally built, i.e., Uh ¼ Mi;h,
and it can be merged with data received from the monitors of
its communication neighbors by using the set-theoretic inter-
section \—the update function F above—which satisfies
Theorem 1 hypotheses. As an illustration of this approach,
consider n ¼ 5 agents in the highway example (Figure 12). As
above, suppose that a car (01 in the figure) misbehaves by remain-
ing in the second lane. All other agents, 02, 03, 04, and 05, share
local estimates by sending one-hop (immediate neighbor) mes-
sages through a communication network described by the con-
nected graph G ¼ ðV ;EÞ, with V ¼ f2; 3; 4; 5g and E ¼
fe2;2; e2;3; e2;5; e3;3; e3;4; e4;4; e5;5g, which gives the following
instance of set-valued consensus system:

Faulty Agent

Figure 12. The misbehaving car 01 is executing a FAST
maneuver on the second lane, while its next right lane is free.

(t = 0) (t = 1) (t = 2) (t = 3)

ξ5(1) ξ5(2) ξ5(3)

ξ2(3)ξ2(2)ξ2(1)

ξ3(3)ξ3(2)ξ3(1)

ξ4(3)ξ4(2)ξ4(1)

(a) (b) (c) (d)

Figure 13. Run of the set-valued consensus. (a) Occupancy maps initial estimated by the four monitors, (b) their values after one
consensus step, (c) after two consensus steps, and (d) their final values, revealing that misbehavior of car 01 can be detected
although no single local monitor was initially able to do it.
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X2(t þ 1) ¼ X2(t) \ X3(t) \ X5(t),
X3(t þ 1) ¼ X2(t) \ X3(t) \ X4(t),
X4(t þ 1) ¼ X3(t) \ X4(t),
X5(t þ 1) ¼ X2(t) \ X5(t):

8
>><

>>:

The system’s evolution is reported in Figure 13, where the
ith row represents the evolution of XiðtÞ (from left to right).
Although no single local monitor has initially detected the
misbehavior, this is dynamically achieved first by cars 02 and
03 after two consensus rounds and then by the other cars. The
simulation confirms that the consensus view of the occupancy
map Mh ¼ U2 \ U3 \ U4 \ U5 (last column in the figure) is
achieved after diamðGÞ ¼ 3 rounds.

Behavior Classification
This final section addresses the behavior classification prob-
lem for a set of autonomous agents. The objective is to
classify heterogeneous agents that behave in a different way,
because of their own physical dynamics or to the rules of
interaction they are obeying, as belonging to a different spe-
cies. The problem is not easy to solve in its generality,
whereas a decentralized classifier (based on the IDS described
above) can be constructed systematically, if the hybrid mod-
els describing all species’ behaviors are available. Preliminary
work on this topic is presented in [27] from which we recall
the following examples.

Consider a society of robots composed of two colonies of
polymorphic tree dwelling ants (Daceton armigerum). Ant coop-
eration during the colony foraging arises whenever a prey can-
not be moved by a single ant [28], [29]. This process, which
can be described as an example of motion cooperation proto-
col P, involves the recruitment of nestmates of the same
colony, by issuing a distinct, colony-dependent visual or
chemical marking. Suppose that two ant colonies exist, a green
and a red one. Green ants start moving around the prey to

inform their neighbors of its impossibility to move it, whereas
red ants stop in front of it. The ants of both colonies are
allowed to execute the following motions: EXPLORE, move
straight along a random direction; STOP, remain fixed;
ALERT, go toward a nestmate; RECRUITING, “issue the
visual signal to recruit neighboring nestmates; RECRUITED
come closer to a nestmate and check for the presence of a prey.
An example where a green ant is able to recognize and recruit
its nestmates is shown in Figure 14.

Finally, consider the example of a set of cars obeying the
left-hand traffic rules, sharing the same automated highway
with other cars obeying the right-hand traffic rules, and
emergency vehicles that are allowed to adopt both rules
simultaneously. The different rules enable the presence of
three existing species of drivers. Each car may require to
understand what set of rules are followed by neighboring
drivers, which can be achieved by a local classifier. Figure 15
shows how an emergency vehicle (the white vehicle in the
figure) is classified by neighboring cars (black, purple, and
blue) running the local classifier. Three colored cells on top
of the emergency vehicle are used to represent which species
the observed behavior is compliant with (from top to down,
right hand, left hand, and emergency species). Figure 15(a)
shows the instant at which the emergency vehicle changes
from FAST to LEFT to overtake the purple vehicle. Note
that a FAST to LEFT transition for an agent following the
right-hand traffic rules implies that its frontal lane is occupied
by another vehicle, and its next left lane is free. To the con-
trary, a FAST to LEFT transition for a car following the left-
hand traffic rules implies its frontal lane is occupied but also
that its next left lane is free, which is false in the example.
Although their limited views, all classifiers are able to exclude
the left-hand species (red color in the second cell), whereas
others all still possible (yellow color in the first and third
cells). Figure 15(b) shows a successive time at which the
emergency vehicle changes from FAST to RIGHT to over-
take the violet vehicle in the figure. With similar reasoning
this allows also the right-hand species to be excluded, which
allows the vehicle to be recognized as one of the individual
of the emergency species. The classifier on the black car is
indeed able to distinguish the vehicle’s species (green color in
the third cell). The classifier on the purple car is able to distin-
guish the emergency species, but has still insufficient infor-
mation to exclude possible unknown species (yellow color).
The blue car has no more visibility of the emergency vehicle
and thus would need the execution of a consensus algorithm
to correctly classify it.

Conclusion
In this article, we have considered some of the problems that
will be encountered in the construction of large systems of
autonomous and heterogeneous robots. The role of hybrid
automata descriptions in providing verifiable safety properties
and in building general distributed IDSs for increasing the
security of these systems has been shown. The method has
also been applied to allow members of a society to classify
other individuals based on their behaviors in case a model for

(a)

(b)

Figure 14. A green ant is able to recognize and recruit
nestmates of the same colony by using only local observation.
(a) The ant is initially unaware of its nestmates, (b) but finally
classifies and detects all of them.
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such behavior is available. If this is not the case, a much
harder and very interesting problem arises, which requires
construction of a model for a behavior that is observed in
individuals of the society.
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